
File System Tuning Guide

StorNext 4.2.1

6-67367-02 Rev A

ii StorNext 4.2.1 File System Tuning Guide

StorNext 4.2.1 File System Tuning Guide, 6-67367-02, Rev A, December 2011, Product of USA.

Quantum Corporation provides this publication “as is” without warranty of any kind, either express or
implied, including but not limited to the implied warranties of merchantability or fitness for a particular
purpose. Quantum Corporation may revise this publication from time to time without notice.

COPYRIGHT STATEMENT

© 2011 Quantum Corporation. All rights reserved.

Your right to copy this manual is limited by copyright law. Making copies or adaptations without prior
written authorization of Quantum Corporation is prohibited by law and constitutes a punishable
violation of the law.

TRADEMARK STATEMENT

Quantum, the Quantum logo, DLT, DLTtape, the DLTtape logo, Scalar, StorNext, the DLT logo, DXi,
GoVault, SDLT, StorageCare, Super DLTtape, and SuperLoader are registered trademarks of Quantum
Corporation in the U.S. and other countries. Protected by Pending and Issued U.S. and Foreign Patents,
including U.S. Patent No. 5,990,810.

LTO and Ultrium are trademarks of HP, IBM, and Quantum in the U.S. and other countries. All other
trademarks are the property of their respective companies.

Specifications are subject to change without notice.

Contents

Chapter 1 StorNext File System Tuning 1

The Underlying Storage System. 2
RAID Cache Configuration . 2
RAID Write-Back Caching . 2
RAID Read-Ahead Caching . 4
RAID Level, Segment Size, and Stripe Size. 4

File Size Mix and Application I/O Characteristics 6
Direct Memory Access (DMA) I/O Transfer 6
Buffer Cache . 6
NFS / CIFS . 7
The NFS subtree_check Option . 8

Reverse Path Lookup (RPL). 8

SNFS and Virus Checking. 9

The Metadata Network . 9

The Metadata Controller System . 10
FSM Configuration File Settings . 11
SNFS Tools . 21
Mount Command Options . 25
SNFS External API . 27

Optimistic Allocation . 27
How Optimistic Allocation Works . 27
Optimistic Allocation Formula. 29
StorNext 4.2.1 File System Tuning Guide iii

Contents
The Distributed LAN (Disk Proxy) Networks . 31
Hardware Configuration . 31
Network Configuration and Topology. 32

Distributed LAN Servers . 34

Distributed LAN Client Vs. Legacy Network Attached Storage 34
Performance . 35
Fault Tolerance . 35
Load Balancing . 35
Client Scalability . 35
Robustness and Stability . 35
Consistent Security Model . 36

Windows Memory Requirements. 36

Cpuspeed Service Issue on Linux . 37

Example FSM Configuration File . 38
Linux Example Configuration File . 38
Windows Example Configuration File 41

Ports Used By StorNext . 47

Chapter 2 Allocation Session Reservation (ASR) 49

How ASR Works. 51
Allocation Sessions . 51
Video Frame Per File Formats . 52
Hotspots and Locality . 53
Small Session Rationale. 54
Large File Sessions and Medium Session Reservation 54

Appendix A StorNext File System Stripe Group Affinity 59

Definitions. 59
Stripe Group . 59
Affinity . 59
Exclusivity . 60

Setting Affinities . 60

Allocation Strategy . 60
iv StorNext 4.2.1 File System Tuning Guide

Contents
Common Use Cases . 61
Segregating Audio and Video Files Onto Their Own Stripe 
Groups . 61
Reserving High-Speed Disk For Critical Files 62

Appendix B Best Practice Recommendations 63

Replication Best Practices . 63
Replication Copies. 63
Replication and Deduplication . 64
Replication and Distributed LAN Client Servers 64
Replication with Multiple Physical Network Interfaces 65

Deduplication Best Practices . 65
Deduplication and File Size . 65
Deduplication and Backups. 65
Deduplication and File Inactivity . 66
Deduplication and System Resources 66
Deduplication Parallel Streams . 66

Truncation Best Practices. 67
Deduplication and Truncation. 67
StorNext 4.2.1 File System Tuning Guide v

Contents
vi StorNext 4.2.1 File System Tuning Guide

Chapter 1
StorNext File System Tuning

The StorNext File System (SNFS) provides extremely high performance
for widely varying scenarios. Many factors determine the level of
performance you will realize. In particular, the performance
characteristics of the underlying storage system are the most critical
factors. However, other components such as the Metadata Network and
MDC systems also have a significant effect on performance.

Furthermore, file size mix and application I/O characteristics may also
present specific performance requirements, so SNFS provides a wide
variety of tunable settings to achieve optimal performance. It is usually
best to use the default SNFS settings, because these are designed to
provide optimal performance under most scenarios. However, this guide
discusses circumstances in which special settings may offer a
performance benefit.

Note: The configuration file examples in this guide show both the
.cfgx (XML) format used by StorNext for Linux and the .cfg
format used by Windows.

For information about locating sample configuration files, see
Example FSM Configuration File on page 38.
StorNext 4.2.1 File System Tuning Guide 1

Chapter 1: StorNext File System Tuning
The Underlying Storage System
The Underlying Storage System

The performance characteristics of the underlying storage system are
the most critical factors for file system performance. Typically, RAID
storage systems provide many tuning options for cache settings, RAID
level, segment size, stripe size, and so on.

RAID Cache
Configuration

The single most important RAID tuning component is the cache
configuration. This is particularly true for small I/O operations.
Contemporary RAID systems such as the EMC CX series and the various
Engenio systems provide excellent small I/O performance with properly
tuned caching. So, for the best general purpose performance
characteristics, it is crucial to utilize the RAID system caching as fully as
possible.

For example, write-back caching is absolutely essential for metadata
stripe groups to achieve high metadata operations throughput.

However, there are a few drawbacks to consider as well. For example,
read-ahead caching improves sequential read performance but might
reduce random performance. Write-back caching is critical for small
write performance but may limit peak large I/O throughput.

Caution: Some RAID systems cannot safely support write-back
caching without risk of data loss, which is not suitable for
critical data such as file system metadata.

Consequently, this is an area that requires an understanding of
application I/O requirements. As a general rule, RAID system caching is
critically important for most applications, so it is the first place to focus
tuning attention.

RAID Write-Back
Caching

Write-back caching dramatically reduces latency in small write
operations. This is accomplished by returning a successful reply as soon
as data is written into cache, and then deferring the operation of
actually writing the data to the physical disks. This results in a great
performance improvement for small I/O operations.
2 StorNext 4.2.1 File System Tuning Guide

Chapter 1: StorNext File System Tuning
The Underlying Storage System
Many contemporary RAID systems protect against write-back cache data
loss due to power or component failure. This is accomplished through
various techniques including redundancy, battery backup, battery-
backed memory, and controller mirroring. To prevent data corruption, it
is important to ensure that these systems are working properly. It is
particularly catastrophic if file system metadata is corrupted, because
complete file system loss could result. Check with your RAID vendor to
make sure that write-back caching is safe to use.

Minimal I/O latency is critically important for metadata stripe groups to
achieve high metadata operations throughput. This is because metadata
operations involve a very high rate of small writes to the metadata disk,
so disk latency is the critical performance factor. Write-back caching can
be an effective approach to minimizing I/O latency and optimizing
metadata operations throughput. This is easily observed in the hourly
File System Manager (FSM) statistics reports in the cvlog file. For
example, here is a message line from the cvlog file:

PIO HiPriWr SUMMARY SnmsMetaDisk0 sysavg/350 sysmin/333
sysmax/367

This statistics message reports average, minimum, and maximum write
latency (in microseconds) for the reporting period. If the observed
average latency exceeds 500 microseconds, peak metadata operation
throughput will be degraded. For example, create operations may be
around 2000 per second when metadata disk latency is below 500
microseconds. However, if metadata disk latency is around 5
milliseconds, create operations per second may be degraded to 200 or
worse.

Another typical write caching approach is a “write-through.” This
approach involves synchronous writes to the physical disk before
returning a successful reply for the I/O operation. The write-through
approach exhibits much worse latency than write-back caching;
therefore, small I/O performance (such as metadata operations) is
severely impacted. It is important to determine which write caching
approach is employed, because the performance observed will differ
greatly for small write I/O operations.

In some cases, large write I/O operations can also benefit from caching.
However, some SNFS customers observe maximum large I/O throughput
by disabling caching. While this may be beneficial for special large I/O
scenarios, it severely degrades small I/O performance; therefore, it is
suboptimal for general-purpose file system performance.
StorNext 4.2.1 File System Tuning Guide 3

Chapter 1: StorNext File System Tuning
The Underlying Storage System
RAID Read-Ahead
Caching

RAID read-ahead caching is a very effective way to improve sequential
read performance for both small (buffered) and large (DMA) I/O
operations. When this setting is utilized, the RAID controller pre-fetches
disk blocks for sequential read operations. Therefore, subsequent
application read operations benefit from cache speed throughput,
which is faster than the physical disk throughput.

This is particularly important for concurrent file streams and mixed I/O
streams, because read-ahead significantly reduces disk head movement
that otherwise severely impacts performance.

While read-ahead caching improves sequential read performance, it
does not help highly transactional performance. Furthermore, some
SNFS customers actually observe maximum large sequential read
throughput by disabling caching. While disabling read-ahead is
beneficial in these unusual cases, it severely degrades typical scenarios.
Therefore, it is unsuitable for most environments.

RAID Level, Segment
Size, and Stripe Size

Configuration settings such as RAID level, segment size, and stripe size
are very important and cannot be changed after put into production, so
it is critical to determine appropriate settings during initial
configuration.

The best RAID level to use for high I/O throughput is usually RAID 5. The
stripe size is determined by the product of the number of disks in the
RAID group and the segment size. For example, a 4+1 RAID 5 group
with 64K segment size results in a 256K stripe size. The stripe size is a
very critical factor for write performance because I/Os smaller than the
stripe size may incur a read/modify/write penalty. It is best to configure
RAID 5 settings with no more than 512K stripe size to avoid the read/
modify/write penalty. The read/modify/write penalty is most noticeable
in the absence of “write-back” caching being performed by the RAID
controller.

The RAID stripe size configuration should typically match the SNFS
StripeBreadth configuration setting when multiple LUNs are utilized
in a stripe group. However, in some cases it might be optimal to
configure the SNFS StripeBreadth as a multiple of the RAID stripe
size, such as when the RAID stripe size is small but the user's I/O sizes are
very large. However, this will be suboptimal for small I/O performance,
so may not be suitable for general purpose usage.
4 StorNext 4.2.1 File System Tuning Guide

Chapter 1: StorNext File System Tuning
The Underlying Storage System
Note: If available, RAID 3 can offer better sequential performance
compared to RAID 5 for streaming-intense production. RAID 5
works well for general purpose file systems but suffers
compared to RAID 3 in raw streaming throughput. RAID 3 and
RAID 5 offer the same redundancy. The difference is that RAID
3 dedicates a drive to parity and RAID 5 spreads it out across all
drives. If RAID 3 is supported on a RAID, it should be
considered, especially for customers that do a lot of media
playback from their RAID.

RAID 1 mirroring is the best RAID level for metadata and journal
storage because it is most optimal for very small I/O sizes. Quantum
recommends using fibre channel or SAS disks (as opposed to SATA) for
metadata and journal due to the higher IOPS performance and
reliability. It is also very important to allocate entire physical disks for
the Metadata and Journal LUNs in ordep to avoid bandwidth contention
with other I/O traffic. Metadata and Journal storage requires very high
IOPS rates (low latency) for optimal performance, so contention can
severely impact IOPS (and latency) and thus overall performance. If
Journal I/O exceeds 1ms average latency, you will observe significant
performance degradation.

Note: For Metadata, RAID 1 works well, but RAID 10 (a stripe of
mirrors) offers advantages. If IOpS is the primary need of the
file system, RAID 10 supports additional performance by
adding additional mirror pairs to the stripe. (The minimum is 4
disks, but 6 or 8 are possible). While RAID 1 has the
performance of one drive (or slightly better than one drive),
RAID 10 offers the performance of RAID 0 and the security of
RAID 1. This suits the small and highly random nature of
metadata. There are few RAIDs that support RAID 10, but if
IOpS is the goal, they should be seriously considered.

It can be useful to use a tool such as lmdd to help determine the
storage system performance characteristics and choose optimal
settings. For example, varying the stripe size and running lmdd with a
range of I/O sizes might be useful to determine an optimal stripe size
multiple to configure the SNFS StripeBreadth.

Some storage vendors now provide RAID 6 capability for improved
reliability over RAID 5. This may be particularly valuable for SATA disks
where bit error rates can lead to disk problems. However, RAID 6
StorNext 4.2.1 File System Tuning Guide 5

Chapter 1: StorNext File System Tuning
File Size Mix and Application I/O Characteristics
typically incurs a performance penalty compared to RAID 5, particularly
for writes. Check with your storage vendor for RAID 5 versus RAID 6
recommendations.

File Size Mix and Application I/O Characteristics

It is always valuable to understand the file size mix of the target dataset
as well as the application I/O characteristics. This includes the number of
concurrent streams, proportion of read versus write streams, I/O size,
sequential versus random, Network File System (NFS) or Common
Internet File System (CIFS) access, and so on.

For example, if the dataset is dominated by small or large files, various
settings can be optimized for the target size range.

Similarly, it might be beneficial to optimize for particular application I/O
characteristics. For example, to optimize for sequential 1MB I/O size it
would be beneficial to configure a stripe group with four 4+1 RAID 5
LUNs with 256K stripe size.

However, optimizing for random I/O performance can incur a
performance trade-off with sequential I/O.

Furthermore, NFS and CIFS access have special requirements to consider
as described in the Direct Memory Access (DMA) I/O Transfer section.

Direct Memory Access
(DMA) I/O Transfer

To achieve the highest possible large sequential I/O transfer throughput,
SNFS provides DMA-based I/O. To utilize DMA I/O, the application must
issue its reads and writes of sufficient size and alignment. This is called
well-formed I/O. See the mount command settings
auto_dma_read_length and auto_dma_write_length, described in
the Mount Command Options on page 25.

Buffer Cache Reads and writes that aren't well-formed utilize the SNFS buffer cache.
This also includes NFS or CIFS-based traffic because the NFS and CIFS
daemons defeat well-formed I/Os issued by the application.
6 StorNext 4.2.1 File System Tuning Guide

Chapter 1: StorNext File System Tuning
File Size Mix and Application I/O Characteristics
There are several configuration parameters that affect buffer cache
performance. The most critical is the RAID cache configuration because
buffered I/O is usually smaller than the RAID stripe size, and therefore
incurs a read/modify/write penalty. It might also be possible to match
the RAID stripe size to the buffer cache I/O size. However, it is typically
most important to optimize the RAID cache configuration settings
described earlier in this document.

It is usually best to configure the RAID stripe size no greater than 256K
for optimal small file buffer cache performance.

For more buffer cache configuration settings, see Mount Command
Options on page 25.

NFS / CIFS It is best to isolate NFS and/or CIFS traffic off of the metadata network
to eliminate contention that will impact performance. For optimal
performance it is necessary to use 1000BaseT instead of 100BaseT. On
NFS clients, use the vers=3, rsize=262144 and wsize=262144 mount
options, and use TCP mounts instead of UDP. When possible, it is also
best to utilize TCP Offload capabilities as well as jumbo frames.

It is best practice to have clients directly attached to the same network
switch as the NFS or CIFS server. Any routing required for NFS or CIFS
traffic incurs additional latency that impacts performance.

It is critical to make sure the speed/duplex settings are correct, because
this severely impacts performance. Most of the time auto-detect is the
correct setting. Some managed switches allow setting speed/duplex
(for example 1000Mb/full,) which disables auto-detect and requires
the host to be set exactly the same. However, if the settings do not
match between switch and host, it severely impacts performance. For
example, if the switch is set to auto‐detect but the host is set to
1000Mb/full, you will observe a high error rate along with extremely
poor performance. On Linux, the ethtool tool can be very useful to
investigate and adjust speed/duplex settings.

If performance requirements cannot be achieved with NFS or CIFS,
consider using a StorNext Distributed LAN client or fibre-channel
attached client.

It can be useful to use a tool such as netperf to help verify network
performance characteristics.
StorNext 4.2.1 File System Tuning Guide 7

Chapter 1: StorNext File System Tuning
Reverse Path Lookup (RPL)
The NFS subtree_check
Option

Although supported in previous StorNext releases, the subtree_check
option (which controls NFS checks on a file handle being within an
exported subdirectory of a file system) is no longer supported as of
StorNext 4.0.

Reverse Path Lookup (RPL)

Beginning with release 4.0, StorNext includes a new feature called
Reverse Path Lookup (RPL). When enabled, RPL provides the following
benefits:

• StorNext replication reports containing lists of files show full
pathnames instead of inode numbers.

• Operations involving reverse path lookup on managed file systems
containing directories with very large file counts (>50,000) perform
significantly better.

RPL is automatically enabled for file systems created using StorNext 4.0
and later. File systems created with StorNext releases prior to 4.0 do not
have RPL enabled.

RPL can be turned on for these file systems by running the command
cvupdatefs –L. However, there are possible side effects to dynamically
enabling RPL, including the following:

• Extensive downtime to populate existing inodes with RPL
information

• Increased metadata space usage (running cvupdatefs –L may
result in as much as double the amount used)

• Decreased performance for certain inode-related operations

Therefore, consider carefully when deciding whether to enable RPL for
file systems created with StorNext releases prior to 4.0.
8 StorNext 4.2.1 File System Tuning Guide

Chapter 1: StorNext File System Tuning
SNFS and Virus Checking
SNFS and Virus Checking

Virus-checking software can severely degrade the performance of any
file system, including SNFS. If you have anti-virus software running on a
Windows Server 2003 or Windows XP machine, Quantum recommends
configuring the software so that it does NOT check SNFS.

The Metadata Network

As with any client/server protocol, SNFS performance is subject to the
limitations of the underlying network. Therefore, it is recommended
that you use a dedicated Metadata Network to avoid contention with
other network traffic. Either 100BaseT or 1000BaseT is required, but for
a dedicated Metadata Network there is usually no benefit from using
1000BaseT over 100BaseT. Neither TCP offload nor are jumbo frames
required.

It is best practice to have all SNFS clients directly attached to the same
network switch as the MDC systems. Any routing required for metadata
traffic will incur additional latency that impacts performance.

It is critical to ensure that speed/duplex settings are correct, as this will
severely impact performance. Most of the time auto-detect is the
correct setting. Some managed switches allow setting speed/duplex,
such as 100Mb/full, which disables auto-detect and requires the host
to be set exactly the same. However, performance is severely impacted if
the settings do not match between switch and host. For example, if the
switch is set to auto-detect but the host is set to 100Mb/full, you will
observe a high error rate and extremely poor performance. On Linux the
ethtool tool can be very useful to investigate and adjust speed/duplex
settings.

It can be useful to use a tool like netperf to help verify the Metadata
Network performance characteristics. For example, if netperf -t TCP_RR
-H <host> reports less than 4,000 transactions per second capacity, a
performance penalty may be incurred. You can also use the netstat tool
to identify tcp retransmissions impacting performance. The cvadmin
“latency-test” tool is also useful for measuring network latency.
StorNext 4.2.1 File System Tuning Guide 9

Chapter 1: StorNext File System Tuning
The Metadata Controller System
Note the following configuration requirements for the metadata
network:

• In cases where gigabit networking hardware is used and maximum
StorNext performance is required, a separate, dedicated switched
Ethernet LAN is recommended for the StorNext metadata network.
If maximum StorNext performance is not required, shared gigabit
networking is acceptable.

• A separate, dedicated switched Ethernet LAN is mandatory for the
metadata network if 100 Mbit/s or slower networking hardware is
used.

• StorNext does not support file system metadata on the same
network as iSCSI, NFS, CIFS, or VLAN data when 100 Mbit/s or
slower networking hardware is used.

The Metadata Controller System

The CPU power and memory capacity of the MDC System are important
performance factors, as well as the number of file systems hosted per
system. In order to ensure fast response time it is necessary to use
dedicated systems, limit the number of file systems hosted per system
(maximum 8), and have an adequate CPU and memory.

Some metadata operations such as file creation can be CPU intensive,
and benefit from increased CPU power. The MDC platform is important
in these scenarios because lower clock- speed CPUs such as Sparc
degrade performance.

Other operations can benefit greatly from increased memory, such as
directory traversal. SNFS provides three config file settings that can be
used to realize performance gains from increased memory:
BufferCacheSize, InodeCacheSize, and ThreadPoolSize.

However, it is critical that the MDC system have enough physical
memory available to ensure that the FSM process doesn’t get swapped
out. Otherwise, severe performance degradation and system instability
can result.

The operating system on the metadata controller must always be run in
U.S. English.
10 StorNext 4.2.1 File System Tuning Guide

Chapter 1: StorNext File System Tuning
The Metadata Controller System
FSM Configuration File
Settings

The following FSM configuration file settings are explained in greater
detail in the cvfs_config man page. For a sample FSM configuration
file, see Example FSM Configuration File on page 38.

The examples in the following sections are excerpted from the sample
configuration file from Example FSM Configuration File on page 38.

Stripe Groups

Splitting apart data, metadata, and journal into separate stripe groups
is usually the most important performance tactic. The create, remove,
and allocate (e.g., write) operations are very sensitive to I/O latency of
the journal stripe group. Configuring a separate stripe group for journal
greatly benefits the speed of these operations because disk seek latency
is minimized. However, if create, remove, and allocate performance
aren't critical, it is okay to share a stripe group for both metadata and
journal, but be sure to set the exclusive property on the stripe group so
it doesn't get allocated for data as well.

Note: It is recommended that you have only a single metadata stripe
group. For increased performance, use multiple LUNs (2 or 4)
for the stripe group.

RAID 1 mirroring is optimal for metadata and journal storage. Utilizing
the write-back caching feature of the RAID system (as described
previously) is critical to optimizing performance of the journal and
metadata stripe groups.

Example (Linux)

<stripeGroup index="0" name="MetaFiles" status="up"
stripeBreadth="262144" read="true" write="true"
metadata="true" journal="false" userdata="false"
realTimeIOs="200" realTimeIOsReserve="1"
realTimeMB="200" realTimeMBReserve="1"
realTimeTokenTimeout="0" multipathMethod="rotate">

<disk index="0" diskLabel="CvfsDisk0"
diskType="MetaDrive"/>

</stripeGroup>

<stripeGroup index="1" name="JournFiles" status="up"
stripeBreadth="262144" read="true" write="true"
metadata="false" journal="true" userdata="false"
StorNext 4.2.1 File System Tuning Guide 11

Chapter 1: StorNext File System Tuning
The Metadata Controller System
realTimeIOs="0" realTimeIOsReserve="0" realTimeMB="0"
realTimeMBReserve="0" realTimeTokenTimeout="0"
multipathMethod="rotate">

<disk index="0" diskLabel="CvfsDisk1"
diskType="JournalDrive"/>

</stripeGroup>

<stripeGroup index="4" name="RegularFiles" status="up"
stripeBreadth="262144" read="true" write="true"
metadata="false" journal="false" userdata="true"
realTimeIOs="0" realTimeIOsReserve="0" realTimeMB="0"
realTimeMBReserve="0" realTimeTokenTimeout="0"
multipathMethod="rotate">

<disk index="0" diskLabel="CvfsDisk14"
diskType="DataDrive"/>

<disk index="1" diskLabel="CvfsDisk15"
diskType="DataDrive"/>

<disk index="2" diskLabel="CvfsDisk16"
diskType="DataDrive"/>

<disk index="3" diskLabel="CvfsDisk17"
diskType="DataDrive"/>

</stripeGroup>

Example (Windows)

[StripeGroup MetaFiles]

Status Up

StripeBreadth 256K

Metadata Yes

Journal No

Exclusive Yes

Read Enabled

Write Enabled

Rtmb 200

Rtios 200

RtmbReserve 1

RtiosReserve 1

RtTokenTimeout 0

MultiPathMethod Rotate

Node CvfsDisk0 0
12 StorNext 4.2.1 File System Tuning Guide

Chapter 1: StorNext File System Tuning
The Metadata Controller System
[StripeGroup JournFiles]

Status Up

StripeBreadth 256K

Metadata No

Journal Yes

Exclusive Yes

Read Enabled

Write Enabled

Rtmb 0

Rtios 0

RtmbReserve 0

RtiosReserve 0

RtTokenTimeout 0

MultiPathMethod Rotate

Node CvfsDisk1 0

[StripeGroup RegularFiles]

Status Up

StripeBreadth 256K

Metadata No

Journal No

Exclusive No

Read Enabled

Write Enabled

Rtmb 0

Rtios 0

RtmbReserve 0

RtiosReserve 0

RtTokenTimeout 0

MultiPathMethod Rotate

Node CvfsDisk14 0

Node CvfsDisk15 1

Node CvfsDisk16 2

Node CvfsDisk17 3

Affinities

Affinities are another stripe group feature that can be very beneficial.
Affinities can direct file allocation to appropriate stripe groups
StorNext 4.2.1 File System Tuning Guide 13

Chapter 1: StorNext File System Tuning
The Metadata Controller System
according to performance requirements. For example, stripe groups can
be set up with unique hardware characteristics such as fast disk versus
slow disk, or wide stripe versus narrow stripe. Affinities can then be
employed to steer files to the appropriate stripe group.

For optimal performance, files that are accessed using large DMA-based
I/O could be steered to wide-stripe stripe groups. Less performance-
critical files could be steered to slow disk stripe groups. Small files could
be steered clear of large files, or to narrow-stripe stripe groups.

Example (Linux)

<stripeGroup index="3" name="AudioFiles" status="up"
stripeBreadth="1048576" read="true" write="true"
metadata="false" journal="false" userdata="true"
realTimeIOs="0" realTimeIOsReserve="0" realTimeMB="0"
realTimeMBReserve="0" realTimeTokenTimeout="0"
multipathMethod="rotate">

<affinities exclusive="true">

<affinity>Audio</affinity>

</affinities>

<disk index="0" diskLabel="CvfsDisk10"
diskType="AudioDrive"/>

<disk index="1" diskLabel="CvfsDisk11"
diskType="AudioDrive"/>

<disk index="2" diskLabel="CvfsDisk12"
diskType="AudioDrive"/>

<disk index="3" diskLabel="CvfsDisk13"
diskType="AudioDrive"/>

</stripeGroup>

Example (Windows)

[StripeGroup AudioFiles]

Status Up

StripeBreadth 1M

Metadata No

Journal No

Exclusive Yes

Read Enabled

Write Enabled

Rtmb 0
14 StorNext 4.2.1 File System Tuning Guide

Chapter 1: StorNext File System Tuning
The Metadata Controller System
Rtios 0

RtmbReserve 0

RtiosReserve 0

RtTokenTimeout 0

MultiPathMethod Rotate

Node CvfsDisk10 0

Node CvfsDisk11 1

Node CvfsDisk12 2

Node CvfsDisk13 3

Affinity Audio

Note: Affinity names cannot be longer than eight characters.

StripeBreadth

This setting should match the RAID stripe size or be a multiple of the
RAID stripe size. Matching the RAID stripe size is usually the most
optimal setting. However, depending on the RAID performance
characteristics and application I/O size, it might be beneficial to use a
multiple or integer fraction of the RAID stripe size. For example, if the
RAID stripe size is 256K, the stripe group contains 4 LUNs, and the
application to be optimized uses DMA I/O with 8MB block size, a
StripeBreadth setting of 2MB might be optimal. In this example the
8MB application I/O is issued as 4 concurrent 2MB I/Os to the RAID. This
concurrency can provide up to a 4X performance increase. This typically
requires some experimentation to determine the RAID characteristics.
The lmdd utility can be very helpful. Note that this setting is not
adjustable after initial file system creation.

Optimal range for the StripeBreadth setting is 128K to multiple
megabytes, but this varies widely. This setting cannot be changed after
being put into production, so its important to choose the setting
carefully during initial configuration.

Example (Linux)

<stripeGroup index="2" name="VideoFiles" status="up"
stripeBreadth="4194304" read="true" write="true"
metadata="false" journal="false" userdata="true"
realTimeIOs="0" realTimeIOsReserve="0" realTimeMB="0"
StorNext 4.2.1 File System Tuning Guide 15

Chapter 1: StorNext File System Tuning
The Metadata Controller System
realTimeMBReserve="0" realTimeTokenTimeout="0"
multipathMethod="rotate">

<affinities exclusive="true">

<affinity>Video</affinity>

</affinities>

<disk index="0" diskLabel="CvfsDisk2"
diskType="VideoDrive"/>

<disk index="1" diskLabel="CvfsDisk3"
diskType="VideoDrive"/>

<disk index="2" diskLabel="CvfsDisk4"
diskType="VideoDrive"/>

<disk index="3" diskLabel="CvfsDisk5"
diskType="VideoDrive"/>

<disk index="4" diskLabel="CvfsDisk6"
diskType="VideoDrive"/>

<disk index="5" diskLabel="CvfsDisk7"
diskType="VideoDrive"/>

<disk index="6" diskLabel="CvfsDisk8"
diskType="VideoDrive"/>

<disk index="7" diskLabel="CvfsDisk9"
diskType="VideoDrive"/>

</stripeGroup>

Example (Windows)

[StripeGroup VideoFiles]

Status Up

StripeBreadth 4M

Metadata No

Journal No

Exclusive Yes

Read Enabled

Write Enabled

Rtmb 0

Rtios 0

RtmbReserve 0

RtiosReserve 0

RtTokenTimeout 0

MultiPathMethod Rotate

Node CvfsDisk2 0
16 StorNext 4.2.1 File System Tuning Guide

Chapter 1: StorNext File System Tuning
The Metadata Controller System
Node CvfsDisk3 1

Node CvfsDisk4 2

Node CvfsDisk5 3

Node CvfsDisk6 4

Node CvfsDisk7 5

Node CvfsDisk8 6

Node CvfsDisk9 7

Affinity Video

BufferCacheSize

This setting consumes up to 2X bytes of memory times the number
specified. Increasing this value can reduce latency of any metadata
operation by performing a hot cache access to directory blocks, inode
information, and other metadata info. This is about 10 to 1000 times
faster than I/O. It is especially important to increase this setting if
metadata I/O latency is high, (for example, more than 2ms average
latency). Quantum recommends sizing this according to how much
memory is available; more is better. Optimal settings for
BufferCacheSize range from 16MB to 128MB for a new file system
and can be increased to 256MB or 512MB as a file system grows. A
higher setting is more effective if the CPU is not heavily loaded.

Example (Linux)

<bufferCacheSize>33554432</bufferCacheSize>

Example (Windows)

BufferCacheSize 32M

InodeCacheSize

This setting consumes about 800 to 1000 bytes of memory times the
number specified. Increasing this value can reduce latency of any
metadata operation by performing a hot cache access to inode
information instead of an I/O to get inode info from disk, about 100 to
1000 times faster. It is especially important to increase this setting if
metadata I/O latency is high, (for example, more than 2ms average
latency). You should try to size this according to the sum number of
working set files for all clients. Optimal settings for InodeCacheSize
range from 16K to 128K for a new file system and can be increased to
StorNext 4.2.1 File System Tuning Guide 17

Chapter 1: StorNext File System Tuning
The Metadata Controller System
256K or 512K as a file system grows. A higher setting is more effective if
the CPU is not heavily loaded.

Example (Linux)

<inodeCacheSize>32768</inodeCacheSize>

Example (Windows)

InodeCacheSize 32K

ThreadPoolSize

This setting consumes up to 512 KB memory times the number
specified. Increasing this value can improve concurrency of metadata
operations. For example, if many client processes are executing
concurrently, the thread pool can become exhausted by I/O wait time.
Increasing the thread pool size permits hot cache operations to be
processed that would otherwise be backed up behind the I/O-bound
operations. There are various O/S limits to the number of threads that
can cause fatal problems for the FSM daemon, so it's not a good idea to
set this setting too high. A range from 32 to 128 is recommended,
depending on the amount of available memory. It is recommended to
size it according to the max threads FSM hourly statistic reported in the
cvlog file. Optimal settings for ThreadPoolSize range from 32K to
128K.

Note: ThreadPoolSize should be adjusted until the Max Threads
hourly statistic no longer tops out at one half of the value of
ThreadPoolSize. Therefore, a setting of 32 is too small when
16 is seen in the hourly logs. This value does not have to be a
power of 2, but it should be even.

Example (Linux)

<threadPoolSize>32</threadPoolSize>

Example (Windows)

ThreadPoolSize 32
18 StorNext 4.2.1 File System Tuning Guide

Chapter 1: StorNext File System Tuning
The Metadata Controller System
FsBlockSize

The FsBlockSize (FSB), metadata disk size, and JournalSize settings
all work together. For example, the FsBlockSize must be set correctly
in order for the metadata sizing to be correct. JournalSize is also
dependent on the FsBlockSize.

For FsBlockSize the optimal settings for both performance and space
utilization are in the range of 16K or 64K.Settings greater than 64K are
not recommended because performance will be adversely impacted due
to inefficient metadata I/O operations. Values less than 16K are not
recommended in most scenarios because startup and failover time may
be adversely impacted. Setting FsBlockSize to higher values is
important for multiterabyte file systems for optimal startup and failover
time.

Note: This is particularly true for slow CPU clock speed metadata
servers such as Sparc. However, values greater than 16K can
severely consume metadata space in cases where the file-to-
directory ratio is low (e.g., less than 100 to 1).

For metadata disk size, you must have a minimum of 25 GB, with more
space allocated depending on the number of files per directory and the
size of your file system.

The following table shows suggested FsBlockSize (FSB) settings and
metadata disk space based on the average number of files per directory
and file system size. The amount of disk space listed for metadata is in
addition to the 25 GB minimum amount. Use this table to determine the
setting for your configuration.

Average No.
of Files Per
Directory

File System SIze: Less
Than 10TB

File System Size: 10TB
or Larger

Less than 10 FSB: 16KB
Metadata: 32 GB per 1M
files

FSB: 64KB
Metadata: 128 GB per
1M files

10-100 FSB: 16KB
Metadata: 8 GB per 1M
files

FSB: 64KB
Metadata: 32 GB per 1M
files
StorNext 4.2.1 File System Tuning Guide 19

Chapter 1: StorNext File System Tuning
The Metadata Controller System
This setting is not adjustable after initial file system creation, so it is very
important to give it careful consideration during initial configuration.

Example (Linux)

<config configVersion="0" name="example"
fsBlockSize="16384" journalSize="16777216">

Example (Windows)

FsBlockSize 16K

JournalSize

The optimal settings for JournalSize are in the range between 16M
and 64M, depending on the FsBlockSize. Avoid values greater than
64M due to potentially severe impacts on startup and failover times.
Values at the higher end of the 16M-64M range may improve
performance of metadata operations in some cases, although at the
cost of slower startup and failover time.

The following table shows recommended settings. Choose the setting
that corresponds to your configuration.

100-1000 FSB: 64KB
Metadata: 8 GB per 1M
files

FSB: 64KB
Metadata: 8 GB per 1M
files

1000 + FSB: 64KB
Metadata: 4 GB per 1M
files

FSB: 64KB
Metadata: 4 GB per 1M
files

FsBlockSize JournalSize

16KB 16MB

64KB 64MB

Average No.
of Files Per
Directory

File System SIze: Less
Than 10TB

File System Size: 10TB
or Larger
20 StorNext 4.2.1 File System Tuning Guide

Chapter 1: StorNext File System Tuning
The Metadata Controller System
This setting is adjustable using the cvupdatefs utility. For more
information, see the cvupdatefs man page.

Note: JournalSize should be evaluated after a few months of use by
viewing the hourly statistics and looking for any journal waits.
If there are many in a single hour, consider increasing the
journal size and then reexamine the hourly statistics to see if
the bottleneck has moved to some other part of the file system
(like ThreadPoolSize or cache misses) or the hardware (high
sysmax and sysavg times).

Example (Linux)

<config configVersion="0" name="example"
fsBlockSize="16384" journalSize="16777216">

Example (Windows)

JournalSize 16M

SNFS Tools The snfsdefrag tool is very useful to identify and correct file extent
fragmentation. Reducing extent fragmentation can be very beneficial
for performance. You can use this utility to determine whether files are
fragmented, and if so, fix them.

The global configuration settings InodeExpandMin, InodeExpandInc,
and InodeExpandMax have been deprecated and settings are instead
calculated on a file-by-file basis as allocations are performed. This
results in better allocations for more files as the values are no longer a
compromise if there are widely varying file types on the file system.
However, if a majority of the files are still fragmented, then these values
can be adjusted and will override the default behavior.

Note: Beginning with StorNext 4.0, the InodeExpand parameters
have been replaced by a new method called Optimistic
Allocation. Although the InodeExpand parameters can still be
entered and used in StorNext 4.0 and later, Quantum
recommends using Optimistic Allocation instead.

For a comparison between InodeExpand and Optimistic
Allocation, see Optimistic Allocation on page 27.
StorNext 4.2.1 File System Tuning Guide 21

Chapter 1: StorNext File System Tuning
The Metadata Controller System
Another way to combat fragmentation is with the cachebufsize mount
option (increasing it from the default of 64k to something larger, such
as 256K or 512K) on the clients that are creating the fragmented files, or
by altering the way the application writes data to the SAN. The
InodeExpand parameters are file system wide and can be adjusted after
the file system has been created. The cachebufsize parameter is a
mount option and can be unique for every client that mounts the file
system.

FSM hourly statistics reporting is another very useful tool. This can
show you the mix of metadata operations being invoked by client
processes, as well as latency information for metadata operations and
metadata and journal I/O. This information is easily accessed in the cvlog
log files. All of the latency oriented stats are reported in microsecond
units.

It also possible to trigger an instant FSM statistics report by setting the
Once Only debug flag using cvadmin. For example:

cvadmin ‐F snfs1 ‐e ‘debug 0x01000000’ ; tail ‐100 /usr/
cvfs/data/snfs1/log/cvlog

Keep in mind the following when running cvadmin:

• Quantum recommended that you have only a single metadata stripe
group. For increased performance, use multiple LUNs (2 or 4) for the
stripe group.

• A large value for FSM threads SUMMARY max busy indicates the
FSM configuration setting ThreadPoolSize is insufficient.

• Extremely high values for FSM cache SUMMARY inode lookups,
TKN SUMMARY TokenRequestV3, or TKN SUMMARY
TokenReqAlloc might indicate excessive file fragmentation. If so,
the snfsdefrag utility can be used to fix the fragmented files.

• The VOP and TKN summary statistics of the form count avg/q+e
min/q+e max/q+e show microsecond queue and execution latency
for the various metadata operations. This shows what type of
metadata operations are most prevalent and most costly. These are
also broken out per client, which can be useful to identify a client
that is disproportionately loading the FSM.

SNFS supports the Windows Perfmon utility. This provides many useful
statistics counters for the SNFS client component. Run rmperfreg.exe
and instperfreg.exe to set up the required registry settings. Next, call
cvdb -P. After these steps, the SNFS counters should be visible to the
22 StorNext 4.2.1 File System Tuning Guide

Chapter 1: StorNext File System Tuning
The Metadata Controller System
Windows Perfmon utility. If not, check the Windows Application Event
log for errors.

The cvcp utility is a higher performance alternative to commands such
as cp and tar. The cvcp utility achieves high performance by using
threads, large I/O buffers, preallocation, stripe alignment, DMA I/O
transfer, and Bulk Create. Also, the cvcp utility uses the SNFS External
API for preallocation and stripe alignment. In the directory-to-directory
copy mode (for example, cvcp source_dir destination_dir,) cvcp
conditionally uses the Bulk Create API to provide a dramatic small file
copy performance boost. However, it will not use Bulk Create in some
scenarios, such as non-root invocation, managed file systems, quotas,
or Windows security. When Bulk Create is utilized, it significantly boosts
performance by reducing the number of metadata operations issued.
For example, up to 20 files can be created all with a single metadata
operation. For more information, see the cvcp man page.

The cvmkfile utility provides a command line tool to utilize valuable
SNFS performance features. These features include preallocation, stripe
alignment, and affinities. See the cvmkfile man page.

The Lmdd utility is very useful to measure raw LUN performance as well
as varied I/O transfer sizes. It is part of the lmbench package and is
available from http://sourceforge.net.

The cvdbset utility has a special “Perf” trace flag that is very useful to
analyze I/O performance. For example: cvdbset perf

Then, you can use cvdb -g to collect trace information such as this:

PERF: Device Write 41 MB/s IOs 2 exts 1 offs 0x0 len
0x400000 mics 95589 ino 0x5

PERF: VFS Write EofDmaAlgn 41 MB/s offs 0x0 len 0x400000
mics 95618 ino 0x5

The “PERF: Device” trace shows throughput measured for the device I/O.
It also shows the number of I/Os into which it was broken, and the
number of extents (sequence of consecutive filesystem blocks).

The “PERF: VFS” trace shows throughput measured for the read or write
system call and significant aspects of the I/O, including:

• Dma: DMA

• Buf: Buffered

• Eof: File extended
StorNext 4.2.1 File System Tuning Guide 23

Chapter 1: StorNext File System Tuning
The Metadata Controller System
• Algn: Well-formed DMA I/O

• Shr: File is shared by another client

• Rt: File is real time

• Zr: Hole in file was zeroed

Both traces also report file offset, I/O size, latency (mics), and inode
number.

Sample use cases:

• Verify that I/O properties are as expected.

You can use the VFS trace to ensure that the displayed properties
are consistent with expectations, such as being well formed;
buffered versus DMA; shared/non-shared; or I/O size. If a small I/O is
being performed DMA, performance will be poor. If DMA I/O is not
well formed, it requires an extra data copy and may even be broken
into small chunks. Zeroing holes in files has a performance impact.

• Determine if metadata operations are impacting performance.

If VFS throughput is inconsistent or significantly less than Device
throughput, it might be caused by metadata operations. In that
case, it would be useful to display “fsmtoken,” “fsmvnops,” and
“fsmdmig” traces in addition to “perf.”

• Identify disk performance issues.

If Device throughput is inconsistent or less than expected, it might
indicate a slow disk in a stripe group, or that RAID tuning is
necessary.

• Identify file fragmentation.

If the extent count “exts” is high, it might indicate a fragmentation
problem.This causes the device I/Os to be broken into smaller
chunks, which can significantly impact throughput.

• Identify read/modify/write condition.

If buffered VFS writes are causing Device reads, it might be
beneficial to match I/O request size to a multiple of the
“cachebufsize” (default 64KB; see mount_cvfs man page). Another
way to avoid this is by truncating the file before writing.

The cvadmin command includes a latency-test utility for measuring the
latency between an FSM and one or more SNFS clients. This utility
causes small messages to be exchanged between the FSM and clients as
24 StorNext 4.2.1 File System Tuning Guide

Chapter 1: StorNext File System Tuning
The Metadata Controller System
quickly as possible for a brief period of time, and reports the average
time it took for each message to receive a response.

The latency-test command has the following syntax:

latency-test <index-number> [<seconds>]

latency-test all [<seconds>]

If an index-number is specified, the test is run between the currently-
selected FSM and the specified client. (Client index numbers are
displayed by the cvadmin who command). If all is specified, the test is
run against each client in turn.

The test is run for 2 seconds, unless a value for seconds is specified.

Here is a sample run:

snadmin (lsi) > latency‐test

Test started on client 1 (bigsky‐node2)... latency
55us

Test started on client 2 (k4)... latency 163us

There is no rule-of-thumb for “good” or “bad” latency values. Latency
can be affected by CPU load or SNFS load on either system, by unrelated
Ethernet traffic, or other factors. However, for otherwise idle systems,
differences in latency between different systems can indicate differences
in hardware performance. (In the example above, the difference is a
Gigabit Ethernet and faster CPU versus a 100BaseT Ethernet and a
slower CPU.) Differences in latency over time for the same system can
indicate new hardware problems, such as a network interface going
bad.

If a latency test has been run for a particular client, the cvadmin who
long command includes the test results in its output, along with
information about when the test was last run.

Mount Command
Options

The following SNFS mount command settings are explained in greater
detail in the mount_cvfs man page.

The default size of the buffer cache varies by platform and main
memory size, and ranges between 32MB and 256MB. And, by default,
each buffer is 64K so the cache contains between 512 and 4096 buffers.
In general, increasing the size of the buffer cache will not improve
performance for streaming reads and writes. However, a large cache
StorNext 4.2.1 File System Tuning Guide 25

Chapter 1: StorNext File System Tuning
The Metadata Controller System
helps greatly in cases of multiple concurrent streams, and where files
are being written and subsequently read. Buffer cache size is adjusted
with the buffercachecap setting.

The buffer cache I/O size is adjusted using the cachebufsize setting. The
default setting is usually optimal; however, sometimes performance can
be improved by increasing this setting to match the RAID 5 stripe size.

Using a large cachebufsize setting decreases random I/O performance
when the amount of data being read is smaller than the cache buffer
size.

You can combat fragmentation with the cachebufsize mount option
(increasing it from the default of 64k to something larger, such as 256K
or 512K) on the clients that are creating the fragmented files, or by
altering the way the application writes data to the SAN. The
InodeExpand parameters are file system wide and can be adjusted after
the file system has been created. The cachebufsize parameter is a
mount option and can be unique for every client that mounts the file
system.

Buffer cache read-ahead can be adjusted with the
buffercache_readahead setting. When the system detects that a file is
being read in its entirety, several buffer cache I/O daemons pre-fetch
data from the file in the background for improved performance. The
default setting is optimal in most scenarios.

The auto_dma_read_length and auto_dma_write_length settings
determine the minimum transfer size where direct DMA I/O is
performed instead of using the buffer cache for well-formed I/O. These
settings can be useful when performance degradation is observed for
small DMA I/O sizes compared to buffer cache. The
auto_dma_write_length setting should be tuned with InodeExpand to
get optimal allocations.

For example, if buffer cache I/O throughput is 200 MB/sec but 512K
DMA I/O size observes only 100MB/sec, it would be useful to determine
which DMA I/O size matches the buffer cache performance and adjust
auto_dma_read_length and auto_dma_write_length accordingly. The
lmdd utility is handy here.

The dircachesize option sets the size of the directory information cache
on the client. This cache can dramatically improve the speed of readdir
operations by reducing metadata network message traffic between the
SNFS client and FSM. Increasing this value improves performance in
scenarios where very large directories are not observing the benefit of
the client directory cache.
26 StorNext 4.2.1 File System Tuning Guide

Chapter 1: StorNext File System Tuning
Optimistic Allocation
SNFS External API The SNFS External API might be useful in some scenarios because it
offers programmatic use of special SNFS performance capabilities such
as affinities, preallocation, and quality of service. For more information,
see the “Quality of Service” chapter of the StorNext User’s Guide API
Guide.

Optimistic Allocation

Starting with StorNext 4.0, the InodeExpand parameters
(InodeExpandMin, InodeExpandInc, and InodeExpandMax) in the file
system configuration file have been deprecated and replaced by a
simple formula that should work better in most cases, especially with
very large files.

The InodeExpand values are still honored if they are in the .cfgx file,
but the StorNext GUI no longer lets you set these values. Furthermore,
when converting to StorNext 4.0 and later, during the .cfg to .cfgx
conversion process, if the InodeExpand values in the .cfg file are found
to be the default example values, these values are not set in the new
.cfgx. Instead, the new formula is used.

The original InodeExpand configuration was difficult to explain, which
could lead to misconfigurations that caused either over or under
allocations (resulting in wasted space or fragmentation,) which is why
the new formula seeks to use allocations that are a percentage of the
existing file's size to minimize wasted space and fragmentation.

How Optimistic
Allocation Works

The InodeExpand values come into play whenever a write to disk is
done, and works as an "optimistic allocator." It is referred to as
“optimistic” because it works under the assumption that where there is
one allocation, there will be another, so it allocates more than you asked
for believing that you'll use the over-allocated space soon.

There are three ways to do a DMA I/O:

• By having an I/O larger than auto_dma_write_length (or
auto_dma_read_length, but that doesn't cause an allocation so it
will be ignored for this case)
StorNext 4.2.1 File System Tuning Guide 27

Chapter 1: StorNext File System Tuning
Optimistic Allocation
• Doing a write to a file that was opened with O_DIRECT

• Opening a file for writes that's already open for writes by another
client (commonly referred to as "shared write mode" which requires
all I/Os go straight to disk to maintain coherency between the
clients)

The first allocation is the larger of the InodeExpandMin or the actual IO
size. For example, if the InodeExpandMin is 2MB and the initial IO is
1MB, the file gets a 2MB allocation. However, if the initial IO was 3MB
and the InodeExpandMin is 2MB, the file gets only a 3MB allocation.

In both cases, the InodeExpandMin value is saved in an internal data
structure in the file's inode, to be used with subsequent allocations.
Subsequent DMA IOs that require more space to be allocated for the file
add to the InodeExpandInc value saved in the inode, and the
allocation is the larger of this value or the IO size.

For example, if InodeExpandMin is 2MB and InodeExpandInc is 4MB
and the first I/O is 1MB, then the file is initially 2MB in size. On the third
1MB I/O the file is extended by 6MB (2MB + 4MB) and is now 8MB
though it only has 3MB of data in it. However, that 6MB allocation is
likely contiguous and therefore the file has at most 2 fragments which is
better than 8 fragments it would have had otherwise.

Assuming there are more 1MB I/Os to the file, it will continue to expand
in this manner. The next DMA I/O requiring an allocation over the 8MB
mark will extend the file by 10MB (2MB + 4MB + 4MB). This pattern
repeats until the file's allocation value is equal to or larger than
InodeExpandMax, at which point it's capped at InodeExpandMax.

This formula generally works well when it's tuned for the specific I/O
pattern. If it's not tuned, with certain I/O patterns it can cause
suboptimal allocations resulting in excess fragmentation or wasted
space from files being over allocated.

This is especially true if there are small files created with O_DIRECT, or
small files that are simultaneously opened by multiple clients which
cause them to use an InodeExpandMin that's too large for them.
Another possible problem is an InodeExpandMax that's too small,
causing the file to be composed of fragments smaller than it otherwise
could have been created with.

With very large files, without increasing InodeExpandMax, it can create
fragmented files due to the relatively small size of the allocations and
the large number that are needed to create a large file.
28 StorNext 4.2.1 File System Tuning Guide

Chapter 1: StorNext File System Tuning
Optimistic Allocation
Another possible problem is an InodeExpandInc that's not aggressive
enough, again causing a file to be created with more fragments than it
could be created with, or to never reach InodeExpandMax because
writes stop before it can be incremented to that value.

Note: Although the preceding example uses DMA I/O, the
InodeExpand parameters apply to both DMA and non-DMA
allocations.

Optimistic Allocation
Formula

The following table shows the new formula (beginning with StorNext
4.x):

To examine how well these allocation strategies work in your specific
environment, use the snfsdefrag utility with the ‐e option to display
the individual extents (allocations) in a file.

File Size (in bytes) Optimistic Allocation

<= 16MB 1MB

16MB to 64MB + 4 bytes 4MB

64MB + 4 bytes to 256MB + 16 bytes 16MB

256MBs + 16 bytes to 1 GB + 64 bytes 64MB

1GB + 64 bytes to 4GB + 256 bytes 256MB

4GB + 256 bytes to 16GB + 1k bytes 1GB

16GB + 1k bytes to 64GB + 4k bytes 4GB

64GB + 4k bytes to 256GB + 16k bytes 16GB

256GB + 16k bytes to 1TB + 64k bytes 64GB

1TB + 64k bytes or larger 256GB
StorNext 4.2.1 File System Tuning Guide 29

Chapter 1: StorNext File System Tuning
Optimistic Allocation
Here is an example output from snfsdefrag ‐e testvideo2.mov:
testvideo2.mov:

group frbase fsbase fsend kbytes depth

0 7 0x0 0xa86df6 0xa86df6 16 4

1 7 0x4000 0x1fb79b0 0x1fb79e1 800 4

HOLE @ frbase 0xcc000 for 41 blocks (656 kbytes)

2 7 0x170000 0x57ca034 0x57ca03f 192 4

3 7 0x1a0000 0x3788860 0x3788867 128 4

4 7 0x1c0000 0x68f6cb4 0x68f6cff 1216 4

5 7 0x2f0000 0x70839dd 0x70839df 48 4

Here is an explanation of the column headings:

• #: This is the extent index.

• group: The group column tells you which stripe group on which the
extent resides. Usually it's all on the same stripe group, but not
always.

• frbase: This is the file's logical offset

• fsbase and fsend: These are the StorNext logical start and end
addresses and should be ignored.

• kbytes: This is the size of the extent (fragment)

• depth: This tells you the number of LUNs that existed in the stripe
group when the file was written. If you perform bandwidth
expansion, this number is the old number of LUNs before
bandwidth expansion, and signifies that those files aren't taking
advantage of the bandwidth expansion.

If the file is sparse, you will see "HOLE" displayed. Having holes in a file
isn't necessarily a problem, but it does create extra fragments (one for
each side of the hole). Tuning to eliminate holes can reduce
fragmentation, although it does that by using more disk space.
30 StorNext 4.2.1 File System Tuning Guide

Chapter 1: StorNext File System Tuning
The Distributed LAN (Disk Proxy) Networks
The Distributed LAN (Disk Proxy) Networks

As with any client/server protocol, SNFS Distributed LAN performance is
subject to the limitations of the underlying network. Therefore, it is
strongly recommended that you use Gigabit (1000BaseT) for Distributed
LAN traffic. Neither TCP offload nor jumbo frames are required.

Hardware
Configuration

SNFS Distributed LAN can easily fill several Gigabit Ethernets with data,
so take special care when selecting and configuring the switches used to
interconnect SNFS Distributed LAN clients and servers. Ensure that your
network switches have enough internal bandwidth to handle all of the
anticipated traffic between all Distributed LAN clients and servers
connected to them.

A network switch that is dropping packets will cause TCP
retransmissions. This can be easily observed on both Linux and Windows
platforms by using the netstat -s command while Distributed LAN is in
progress. Reducing the TCP window size used by Distributed LAN might
also help with an oversubscribed network switch. The Windows client
Distributed LAN tab and the Linux dpserver file contain the tuning
parameter for the TCP window size. Note that Distributed LAN server
remounts are required after changing this parameter.

It is best practice to have all SNFS Distributed LAN clients and servers
directly attached to the same network switch. A router between a
Distributed LAN client and server could be easily overwhelmed by the
data rates required.

It is critical to ensure that speed/duplex settings are correct, as this will
severely impact performance. Most of the time auto-detect is the
correct setting. Some managed switches allow setting speed/duplex,
such as 1000Mb/full, which disables auto-detect and requires the host
to be set exactly the same. However, performance is severely impacted if
the settings do not match between switch and host. For example, if the
switch is set to auto-detect but the host is set to 1000Mb/full, you will
observe a high error rate and extremely poor performance. On Linux the
ethtool command can be very useful to investigate and adjust speed/
duplex settings.

In some cases, TCP offload seems to cause problems with Distributed
LAN by miscalculating checksums under heavy loads. This is indicated by
StorNext 4.2.1 File System Tuning Guide 31

Chapter 1: StorNext File System Tuning
The Distributed LAN (Disk Proxy) Networks
bad segments indicated in the output of netstat -s. On Linux, the TCP
offload state can be queried by running ethtool -k, and modified by
running ethtool -K. On Windows it is configured through the
Advanced tab of the configuration properties for a network interface.

The internal bus bandwidth of a Distributed LAN client or server can also
place a limit on performance. A basic PCI- or PCI-X-based workstation
might not have enough bus bandwidth to run multiple Gigabit Ethernet
NICs at full speed; PCI Express is recommended but not required.

Similarly, the performance characteristics of NICs can vary widely and
ultimately limit the performance of Distributed LAN. For example, some
NICs might be able to transmit or receive each packet at Gigabit speeds,
but not be able to sustain the maximum needed packet rate. An
inexpensive 32-bit NIC plugged into a 64-bit PCI-X slot is incapable of
fully utilizing the host's bus bandwidth.

It can be useful to use a tool like netperf to help verify the performance
characteristics of each Distributed LAN network. (When using netperf,
on a system with multiple NICs, take care to specify the right IP
addresses in order to ensure the network being tested is the one you
will be running Distributed LAN over. For example, if netperf -t TCP_RR
-H <host> reports less than 4,000 transactions per second capacity, a
performance penalty might be incurred. Multiple copies of netperf can
also be run in parallel to determine the performance characteristics of
multiple NICs.

Network Configuration
and Topology

For maximum throughput, SNFS distributed LAN can utilize multiple
NICs on both clients and servers. In order to take advantage of this
feature, each of the NICs on a given host must be on a different IP
subnetwork. (This is a requirement of TCP/IP routing, not of SNFS - TCP/
IP can't utilize multiple NICs on the same subnetwork.) An example of
this is shown in the following illustration.
32 StorNext 4.2.1 File System Tuning Guide

Chapter 1: StorNext File System Tuning
The Distributed LAN (Disk Proxy) Networks
Figure 1 Multi-NIC Hardware
and IP Configuration Diagram

In the diagram there are two subnetworks: the blue subnetwork
(10.0.0.x) and the red subnetwork (192.168.9.x). Servers such as S1 are
connected to both the blue and red subnetworks, and can each provide
up to 2 GByte/s of throughput to clients. (The three servers shown
would thus provide an aggregate of 6 GByte/s.)

Clients such as C1 are also connected to both the blue and red
subnetworks, and can each get up to 2 GByte/s of throughput. Clients
such as C2 are connected only to the blue subnetwork, and thus get a
maximum of 1 GByte/s of throughput. SNFS automatically load-
balances among NICs and servers to maximize throughput for all clients.

Note: The diagram shows separate physical switches used for the two
subnetworks. They can, in fact, be the same switch, provided it
has sufficient internal bandwidth to handle the aggregate
traffic.

Distributed
LAN

Client
C1

10.0.0.45

192.168.9.45
Distributed

LAN
Client

C1
10.0.0.44

192.168.9.44

Distributed
LAN

Server
S1

10.0.0.35

192.168.9.35

Distributed
LAN

Server
S1

10.0.0.34

192.168.9.34

Distributed
LAN

Client
C2

10.0.0.57
Distributed

LAN
Client

C2

10.0.0.56

Switch
A

10.0.0.x

Switch
B

192.168.9.x

Distributed
LAN

Server
S1

10.0.0.33

192.168.9.33

Distributed
LAN

Client
C1

10.0.0.43

192.168.9.43

Distributed
LAN

Client
C2

10.0.0.55

SAN
StorNext 4.2.1 File System Tuning Guide 33

Chapter 1: StorNext File System Tuning
Distributed LAN Servers
Distributed LAN Servers

Distributed LAN Servers must have sufficient memory. When a
Distributed LAN Server does not have sufficient memory, its
performance in servicing Distributed LAN I/O requests might suffer. In
some cases (particularly on Windows,) it might hang.

Refer to the StorNext Release Notes for this release’s memory
requirements.

Distributed LAN Servers must also have sufficient bus bandwidth. As
discussed above, a Distributed LAN Server must have sufficient bus
bandwidth to operate the NICs used for Distributed LAN I/O at full
speed, while at the same time operating their Fibre Channel HBAs. Thus,
Quantum strongly recommends using PCI Express for Distributed LAN
Servers.

Distributed LAN Client Vs. Legacy Network Attached
Storage

StorNext provides support for legacy Network Attached Storage (NAS)
protocols, including Network File System (NFS) and Common Internet
File System (CIFS).

However, using Distributed LAN Client (DLC) for NAS connectivity
provides several compelling advantages in the following areas:

• Performance

• Fault Tolerance

• Load Balancing

• Client Scalability

• Robustness and Stability

• Security Model Consistency
34 StorNext 4.2.1 File System Tuning Guide

Chapter 1: StorNext File System Tuning
Distributed LAN Client Vs. Legacy Network Attached Storage
Performance DLC outperforms NFS and CIFS for single-stream I/O and provides higher
aggregate bandwidth. For inferior NFS client implementations, the
difference can be more than a factor of two. DLC also makes extremely
efficient use of multiple NICs (even for single streams), whereas legacy
NAS protocols allow only a single NIC to be used. In addition, DLC
clients communicate directly with StorNext metadata controllers instead
of going through an intermediate server, thereby lowering IOP latency.

Fault Tolerance DLC handles faults transparently, where possible. If an I/O is in progress
and a NIC fails, the I/O is retried on another NIC (if one is available). If a
Distributed LAN Server fails while an I/O is in flight, the I/O is retried on
another server (if one is running). When faults occur, applications
performing I/O will experience a delay but not an error, and no
administrative intervention is required to continue operation. These
fault tolerance features are automatic and require no configuration.

Load Balancing DLC automatically makes use of all available Distributed LAN Servers in
an active/active fashion, and evenly spreads I/O across them. If a server
goes down or one is added, the load balancing system automatically
adjusts to support the new configuration.

Client Scalability The following table shows testing results using NFS, CIFS and DLC.

Robustness and
Stability

The code path for DLC is simpler, involves fewer file system stacks, and is
not integrated with kernel components that constantly change with
every operating system release (for example, the Linux NFS code).
Therefore, DLC provides increased stability that is comparable to the
StorNext SAN Client.

Largest Tested Configuration

Number of Clients Tested (via
simulation)

NFS CIFS DLC

4 4 1000
StorNext 4.2.1 File System Tuning Guide 35

Chapter 1: StorNext File System Tuning
Windows Memory Requirements
Consistent Security
Model

DLC clients have the same security model as StorNext SAN clients. When
CIFS and NFS are used, some security models aren’t supported. (For
example, Windows ACLs are not accessible when running UNIX Samba
servers.)

Windows Memory Requirements

Beginning in version 2.6.1, StorNext includes a number of performance
enhancements that enable it to better react to changing customer load.
However, these enhancements come with a price: memory requirement.

When running on a 32-bit Windows system that is experiencing memory
pressure, the tuning parameters might need adjusting to avoid running
the system out of non-paged memory. To determine current operation,
open the Task Manager and watch the Nonpaged tag in the Kernel
Memory pane in the lower right hand corner. This value should be kept
under 200MB. If the non-paged pool approaches this size on a 32-bit
system, instability might occur.

The problem will manifest itself by commands failing, messages being
sent to the system log about insufficient memory, the fsmpm
mysteriously dying, repeated FSM reconnect attempts, and messages
being sent to the application log and cvlog.txt about socket failures
with the status code (10555) which is ENOBUFS.

The solution is to adjust a few parameters on the Cache Parameters tab
in the SNFS control panel (cvntclnt). These parameters control how
much memory is consumed by the directory cache, the buffer cache,
and the local file cache.

As always, an understanding of the customers’ workload aids in
determining the correct values. Tuning is not an exact science, and
requires some trial-and-error (and the unfortunate reboots) to come up
with values that work best in the customer’s environment.

The first is the Directory Cache Size. The default is 10 (MB). If you do
not have large directories, or do not perform lots of directory scans, this
number can be reduced to 1 or 2 MB. The impact will be slightly slower
directory lookups in directories that are frequently accessed.
36 StorNext 4.2.1 File System Tuning Guide

Chapter 1: StorNext File System Tuning
Cpuspeed Service Issue on Linux
Also, in the Mount Option panel, you should set the Paged DirCache
option.

The next parameters control how many file structures are cached on the
client. These are controlled by the Meta-data Cache low water mark,
Meta-data Cache high water mark and Meta-data Cache Max water
mark. Each file structure is represented internally by a data structure
called the “cvnode.” The cvnode represents all the state about a file or
directory. The more cvnodes that there are encached on the client, the
fewer trips the client has to make over the wire to contact the FSM.

Each cvnode is approximately 1462 bytes in size and is allocated from
the non-paged pool. The cvnode cache is periodically purged so that
unused entries are freed. The decision to purge the cache is made based
on the Low, High, and Max water mark values. The 'Low' default is
1024, the 'High' default is 3072, and the 'Max' default is 4096.

These values should be adjusted so that the cache does not bloat and
consume more memory than it should. These values are highly
dependent on the customers work load and access patterns. Values of
512 for the High water mark will cause the cvnode cache to be purged
when more than 512 entries are present. The cache will be purged until
the low water mark is reached, for example 128. The Max water mark is
for situations where memory is very tight. The normal purge algorithms
takes access time into account when determining a candidate to evict
from the cache; in tight memory situations (when there are more than
'max' entries in the cache), these constraints are relaxed so that memory
can be released. A value of 1024 in a tight memory situation should
work.

Cpuspeed Service Issue on Linux

Cpuspeed, an external Linux service on recent Intel processors, is not
correctly tuned to allow StorNext to take advantage of processor speed.
Suse systems may also be impacted, as may AMD processors with
similar capabilities.
On processors with a variable clockspeed (turboboost), the cpuspeed
service on Redhat controls the actual running speed of the processors
based on system load.
StorNext 4.2.1 File System Tuning Guide 37

Chapter 1: StorNext File System Tuning
Example FSM Configuration File
A workload such as a heavily used FSM and probably Storage Manager
does not register as something which needs a faster cpu. Turning off the
cpuspeed service has been shown to double metadata performance on
affected hardware.

Looking at the reported CPU clock speed by doing cat /proc/ cpuinfo
while the system is under load shows if a system is impacted by this
issue.

Example FSM Configuration File

On Linux, the StorNext configuration file uses an XML format (.cfgx). On
Windows, the configuration file uses a text format (.cfg). However, the
values contained in both files are similar.

You can locate an example StorNext configuration file in the following
directory:

• Linux — /usr/cvfs/examples/example.cfgx

• Windows — C:\Program Files\Stornext\config\example.cfg

If you installed StorNext in a location other than the default
installation directory, the example configuration file is located in
C:\<install_directory>\config\example.cfg

Linux Example
Configuration File

Below are the contents of the StorNext example configuration file for
Linux (example.cfgx):

<?xml version="1.0" encoding="UTF‐8"?>

<configDoc xmlns="http://www.quantum.com/snfs" version="1.0">

<config configVersion="0" name="example" fsBlockSize="16384"
journalSize="16777216">

<globals>

<abmFreeLimit>false</abmFreeLimit>

<allocationStrategy>round</allocationStrategy>

<haFsType>HaUnmonitored</haFsType>

<bufferCacheSize>33554432</bufferCacheSize>

<cvRootDir>/</cvRootDir>
38 StorNext 4.2.1 File System Tuning Guide

Chapter 1: StorNext File System Tuning
Example FSM Configuration File
<storageManager>false</storageManager>

<dataMigrationThreadPoolSize>128</dataMigrationThreadPoolSize>

<debug>00000000</debug>

<dirWarp>true</dirWarp>

<extentCountThreshold>49152</extentCountThreshold>

<enableSpotlight>false</enableSpotlight>

<enforceAcls>false</enforceAcls>

<fileLocks>false</fileLocks>

<fileLockResyncTimeOut>20</fileLockResyncTimeOut>

<forcePerfectFit>false</forcePerfectFit>

<fsCapacityThreshold>0</fsCapacityThreshold>

<globalSuperUser>true</globalSuperUser>

<inodeCacheSize>32768</inodeCacheSize>

<inodeExpandMin>0</inodeExpandMin>

<inodeExpandInc>0</inodeExpandInc>

<inodeExpandMax>0</inodeExpandMax>

<inodeDeleteMax>0</inodeDeleteMax>

<inodeStripeWidth>0</inodeStripeWidth>

<maxConnections>32</maxConnections>

<maxLogs>4</maxLogs>

<remoteNotification>false</remoteNotification>

<reservedSpace>true</reservedSpace>

<fsmRealTime>false</fsmRealTime>

<fsmMemLocked>false</fsmMemLocked>

<opHangLimitSecs>180</opHangLimitSecs>

<perfectFitSize>131072</perfectFitSize>

<quotas>false</quotas>

<restoreJournal>false</restoreJournal>

<restoreJournalDir/>

<restoreJournalMaxHours>0</restoreJournalMaxHours>

<restoreJournalMaxMb>0</restoreJournalMaxMb>

<stripeAlignSize>0</stripeAlignSize>

<trimOnClose>0</trimOnClose>

<threadPoolSize>32</threadPoolSize>

<unixDirectoryCreationModeOnWindows>644</
unixDirectoryCreationModeOnWindows>

<unixIdFabricationOnWindows>false</unixIdFabricationOnWindows>

<unixFileCreationModeOnWindows>755</unixFileCreationModeOnWindows>
StorNext 4.2.1 File System Tuning Guide 39

Chapter 1: StorNext File System Tuning
Example FSM Configuration File
<unixNobodyUidOnWindows>60001</unixNobodyUidOnWindows>

<unixNobodyGidOnWindows>60001</unixNobodyGidOnWindows>

<windowsSecurity>true</windowsSecurity>

<eventFiles>true</eventFiles>

<eventFileDir/>

<allocSessionReservation>false</allocSessionReservation>

</globals>

<diskTypes>

<diskType typeName="MetaDrive" sectors="99999999" sectorSize="512"/>

<diskType typeName="JournalDrive" sectors="99999999" sectorSize="512"/>

<diskType typeName="VideoDrive" sectors="99999999" sectorSize="512"/>

<diskType typeName="AudioDrive" sectors="99999999" sectorSize="512"/>

<diskType typeName="DataDrive" sectors="99999999" sectorSize="512"/>

</diskTypes>

<stripeGroups>

<stripeGroup index="0" name="MetaFiles" status="up"
stripeBreadth="262144" read="true" write="true" metadata="true"
journal="false" userdata="false" realTimeIOs="200"
realTimeIOsReserve="1" realTimeMB="200" realTimeMBReserve="1"
realTimeTokenTimeout="0" multipathMethod="rotate">

<disk index="0" diskLabel="CvfsDisk0" diskType="MetaDrive"/>

</stripeGroup>

<stripeGroup index="1" name="JournFiles" status="up"
stripeBreadth="262144" read="true" write="true" metadata="false"
journal="true" userdata="false" realTimeIOs="0" realTimeIOsReserve="0"
realTimeMB="0" realTimeMBReserve="0" realTimeTokenTimeout="0"
multipathMethod="rotate">

<disk index="0" diskLabel="CvfsDisk1" diskType="JournalDrive"/>

</stripeGroup>

<stripeGroup index="2" name="VideoFiles" status="up"
stripeBreadth="4194304" read="true" write="true" metadata="false"
journal="false" userdata="true" realTimeIOs="0" realTimeIOsReserve="0"
realTimeMB="0" realTimeMBReserve="0" realTimeTokenTimeout="0"
multipathMethod="rotate">

<affinities exclusive="true">

<affinity>Video</affinity>

</affinities>

<disk index="0" diskLabel="CvfsDisk2" diskType="VideoDrive"/>

<disk index="1" diskLabel="CvfsDisk3" diskType="VideoDrive"/>
40 StorNext 4.2.1 File System Tuning Guide

Chapter 1: StorNext File System Tuning
Example FSM Configuration File
<disk index="2" diskLabel="CvfsDisk4" diskType="VideoDrive"/>

<disk index="3" diskLabel="CvfsDisk5" diskType="VideoDrive"/>

<disk index="4" diskLabel="CvfsDisk6" diskType="VideoDrive"/>

<disk index="5" diskLabel="CvfsDisk7" diskType="VideoDrive"/>

<disk index="6" diskLabel="CvfsDisk8" diskType="VideoDrive"/>

<disk index="7" diskLabel="CvfsDisk9" diskType="VideoDrive"/>

</stripeGroup>

<stripeGroup index="3" name="AudioFiles" status="up"
stripeBreadth="1048576" read="true" write="true" metadata="false"
journal="false" userdata="true" realTimeIOs="0" realTimeIOsReserve="0"
realTimeMB="0" realTimeMBReserve="0" realTimeTokenTimeout="0"
multipathMethod="rotate">

<affinities exclusive="true">

<affinity>Audio</affinity>

</affinities>

<disk index="0" diskLabel="CvfsDisk10" diskType="AudioDrive"/>

<disk index="1" diskLabel="CvfsDisk11" diskType="AudioDrive"/>

<disk index="2" diskLabel="CvfsDisk12" diskType="AudioDrive"/>

<disk index="3" diskLabel="CvfsDisk13" diskType="AudioDrive"/>

</stripeGroup>

<stripeGroup index="4" name="RegularFiles" status="up"
stripeBreadth="262144" read="true" write="true" metadata="false"
journal="false" userdata="true" realTimeIOs="0" realTimeIOsReserve="0"
realTimeMB="0" realTimeMBReserve="0" realTimeTokenTimeout="0"
multipathMethod="rotate">

<disk index="0" diskLabel="CvfsDisk14" diskType="DataDrive"/>

<disk index="1" diskLabel="CvfsDisk15" diskType="DataDrive"/>

<disk index="2" diskLabel="CvfsDisk16" diskType="DataDrive"/>

<disk index="3" diskLabel="CvfsDisk17" diskType="DataDrive"/>

</stripeGroup>

</stripeGroups>

</config>

</configDoc>

Windows Example
Configuration File

Below are the contents of the StorNext example configuration file for
Windows (example.cfg):
Globals
StorNext 4.2.1 File System Tuning Guide 41

Chapter 1: StorNext File System Tuning
Example FSM Configuration File
ABMFreeLimit no

AllocationStrategy Round

HaFsType HaUnmonitored

FileLocks No

BrlResyncTimeout 20

BufferCacheSize 32M

CvRootDir /

DataMigration No

DataMigrationThreadPoolSize 128

Debug 0x0

DirWarp Yes

ExtentCountThreshold 48K

EnableSpotlight No

ForcePerfectFit No

FsBlockSize 16K

GlobalSuperUser Yes

InodeCacheSize 32K

InodeExpandMin 0

InodeExpandInc 0

InodeExpandMax 0

InodeDeleteMax 0

InodeStripeWidth 0

JournalSize 16M

MaxConnections 32

MaxLogs 4

PerfectFitSize 128K

RemoteNotification No

ReservedSpace Yes

FSMRealtime No

FSMMemlock No

OpHangLimitSecs 180

Quotas No

RestoreJournal No

RestoreJournalMaxHours 0

RestoreJournalMaxMB 0

StripeAlignSize 0

TrimOnClose 0

ThreadPoolSize 32
42 StorNext 4.2.1 File System Tuning Guide

Chapter 1: StorNext File System Tuning
Example FSM Configuration File
UnixDirectoryCreationModeOnWindows 0644

UnixIdFabricationOnWindows No

UnixFileCreationModeOnWindows 0755

UnixNobodyUidOnWindows 60001

UnixNobodyGidOnWindows 60001

WindowsSecurity Yes

EventFiles Yes

AllocSessionReservation No

Disk Types

[DiskType MetaDrive]

Sectors 99999999

SectorSize 512

[DiskType JournalDrive]

Sectors 99999999

SectorSize 512

[DiskType VideoDrive]

Sectors 99999999

SectorSize 512

[DiskType AudioDrive]

Sectors 99999999

SectorSize 512

[DiskType DataDrive]

Sectors 99999999

SectorSize 512

Disks

[Disk CvfsDisk0]

Type MetaDrive

Status UP

[Disk CvfsDisk1]

Type JournalDrive

Status UP

[Disk CvfsDisk2]

Type VideoDrive

Status UP

[Disk CvfsDisk3]

Type VideoDrive
StorNext 4.2.1 File System Tuning Guide 43

Chapter 1: StorNext File System Tuning
Example FSM Configuration File
Status UP

[Disk CvfsDisk4]

Type VideoDrive

Status UP

[Disk CvfsDisk5]

Type VideoDrive

Status UP

[Disk CvfsDisk6]

Type VideoDrive

Status UP

[Disk CvfsDisk7]

Type VideoDrive

Status UP

[Disk CvfsDisk8]

Type VideoDrive

Status UP

[Disk CvfsDisk9]

Type VideoDrive

Status UP

[Disk CvfsDisk10]

Type AudioDrive

Status UP

[Disk CvfsDisk11]

Type AudioDrive

Status UP

[Disk CvfsDisk12]

Type AudioDrive

Status UP

[Disk CvfsDisk13]

Type AudioDrive

Status UP

[Disk CvfsDisk14]

Type DataDrive

Status UP

[Disk CvfsDisk15]

Type DataDrive

Status UP

[Disk CvfsDisk16]
44 StorNext 4.2.1 File System Tuning Guide

Chapter 1: StorNext File System Tuning
Example FSM Configuration File
Type DataDrive

Status UP

[Disk CvfsDisk17]

Type DataDrive

Status UP

Stripe Groups

[StripeGroup MetaFiles]

Status Up

StripeBreadth 256K

Metadata Yes

Journal No

Exclusive Yes

Read Enabled

Write Enabled

Rtmb 200

Rtios 200

RtmbReserve 1

RtiosReserve 1

RtTokenTimeout 0

MultiPathMethod Rotate

Node CvfsDisk0 0

[StripeGroup JournFiles]

Status Up

StripeBreadth 256K

Metadata No

Journal Yes

Exclusive Yes

Read Enabled

Write Enabled

Rtmb 0

Rtios 0

RtmbReserve 0

RtiosReserve 0

RtTokenTimeout 0

MultiPathMethod Rotate

Node CvfsDisk1 0
StorNext 4.2.1 File System Tuning Guide 45

Chapter 1: StorNext File System Tuning
Example FSM Configuration File
[StripeGroup VideoFiles]

Status Up

StripeBreadth 4M

Metadata No

Journal No

Exclusive No

Read Enabled

Write Enabled

Rtmb 0

Rtios 0

RtmbReserve 0

RtiosReserve 0

RtTokenTimeout 0

MultiPathMethod Rotate

Node CvfsDisk2 0

Node CvfsDisk3 1

Node CvfsDisk4 2

Node CvfsDisk5 3

Node CvfsDisk6 4

Node CvfsDisk7 5

Node CvfsDisk8 6

Node CvfsDisk9 7

Affinity Video

[StripeGroup AudioFiles]

Status Up

StripeBreadth 1M

Metadata No

Journal No

Exclusive No

Read Enabled

Write Enabled

Rtmb 0

Rtios 0

RtmbReserve 0

RtiosReserve 0

RtTokenTimeout 0
46 StorNext 4.2.1 File System Tuning Guide

Chapter 1: StorNext File System Tuning
Ports Used By StorNext
MultiPathMethod Rotate

Node CvfsDisk10 0

Node CvfsDisk11 1

Node CvfsDisk12 2

Node CvfsDisk13 3

Affinity Audio

[StripeGroup RegularFiles]
Status Up
StripeBreadth 256K
Metadata No
Journal No
Exclusive No
Read Enabled
Write Enabled
Rtmb 0
Rtios 0
RtmbReserve 0
RtiosReserve 0
RtTokenTimeout 0
MultiPathMethod Rotate
Node CvfsDisk14 0
Node CvfsDisk15 1
Node CvfsDisk16 2
Node CvfsDisk17 3

Ports Used By StorNext

The following table lists ports that are used by StorNext and its ancillary
components.

For additional information about ports used by StorNext, see the man
page for fsports(4).
StorNext 4.2.1 File System Tuning Guide 47

Chapter 1: StorNext File System Tuning
Ports Used By StorNext
Port StorNext Use Notes

81 GUI (Java) User starts at port
81, redirected to 443

443 GUI (Java)

1527 GUI (Java connection
to derby db)

1070 GUI (Java connection
to Linter)

1062, 1063 Blockpool Both ports if HA
primary

14500 snpolicyd

5164 fsmpm (See CR 30846)

5189 HA Manager Symbol
HAMGR_DEFAULT_PO
RT

Various fsm, fsmpm Change ports with
fsports file

20566 Linter Only used internally
on an MDC.

60001,
60002 …

ACSLS Tape Libraries Not used by
StorNext, but related
48 StorNext 4.2.1 File System Tuning Guide

Chapter 2
Allocation Session
Reservation (ASR)

Debuting in StorNext 4.2, the Allocation Session Reservation (ASR)
feature provides another method of allocating space to regular files.
ASR optimizes on-disk allocation behavior in workflows (such as some
rich media streaming applications) which write and read sequences of
files of certain sizes in specific directories.

With ASR, file sequences in a directory are usually placed on disk based
on the order in which they are written. ASR keeps these files together
even if other applications are writing at the same time in different
directories or from different StorNext clients. The feature also has the
ability to reduce file system free space fragmentation since collections
of files which are written together are then typically removed together.

The workflows which see reduced free space fragmentation are those
which have concurrent applications each writing files in their own
directories and using files mostly larger than 1MB each. With this kind
of workflow, when a collection of files from one application is removed,
the space is freed up in big chunks which are independent of other
application runs.

Some workflows will see worse performance and may also see more free
space fragmentation with ASR. These workflows are those which have
concurrent applications all using the same directory on the same client,
or all writing the same file on different clients. Additionally,
performance may be adversely affected when stripe groups are
configured and used to distribute applications. (See Hotspots and
Locality on page 53.)
StorNext 4.2.1 File System Tuning Guide 49

Chapter 2: Allocation Session Reservation (ASR)
Some applications depend on stripe alignment for performance. Stripe
alignment can cause the allocator to chop an allocation request to make
its head and tail land on a stripe boundary. The ASR feature disables
stripe alignment since the chopping can lead to even more free space
fragmentation since the chopping is within ASR chunks.

Customers should run with ASR and see if performance is adversely
affected. You can do this by turning On or Off by setting the size in the
configuration file or via the StorNext GUI and then restarting the FSM.
Then, run your application and measure performance.

The fact that files are kept together on a stripe group for the ASR chunk
size may improve performance and make stripe alignment unnecessary.

The ideal situation is for a system administrator to watch the system
both with and without ASR enabled. First, performance should be
monitored. Second, fragmentation can be checked. There are two kinds
of fragmentation:

1 Fragmentation within files.

2 Free space fragmentation.

Fragments within a collection of files can be counted using
snfsdefrag(1), e.g., snfsdefrag ‐t ‐r ‐c <directory>. This
command lists all the files and the number of extents in each file, and
then the total of all regular files, extents, and extents per file.

The command, cvfsck ‐a ‐f <file system> lists free space
fragments on each stripe group by chunk size, the total number of free
space fragments for each stripe group, and then the total number of
stripe groups and free space fragments for the entire file system. With
this tool, free space fragments can be counted before and after a
workflow is run. (“Workflows” should include normal administrative
cleanup and modifications which occur over time.)

Administrators are encouraged to monitor their system to see how
fragmentation is occurring.

The snfsdefrag(1) command can be run periodically to defragment
files, reducing the number of fragments in those files. This usually helps
reduce free space fragmentation, too.
50 StorNext 4.2.1 File System Tuning Guide

Chapter 2: Allocation Session Reservation (ASR)
How ASR Works
How ASR Works

For details on how to set the “size” and enable this feature, refer to the
snfs_config(5) man page and the StorNext GUI’s online help. The man
page snfs_config(5) also contains an overview of how the ASR feature
works.

Because this “How ASR Works” section provides more detail, before
reading this section you should already be familiar with the man page
contents.

Allocation Sessions Allocation requests (which occur whenever a file is written to an area
that has no actual disk space allocated,) are grouped into sessions. A
chunk of space is reserved for a session. The size of the chunk is
determined using the configured size and the size of the allocation
request. If the allocation size is bigger than 1MB and smaller than 1/8th
the configured ASR chunk size, the ASR chunk size is rounded up to be a
multiple of the initial allocation request size.

There are three session types: small, medium (directory), and large
(file). The session type is determined by the file offset and requested
allocation size on a given allocation request.

• Small sessions are for sizes (offset + allocation size) smaller than
1MB.

• Medium sessions are for sizes 1MB through 1/10th of the
configured ASR size.

• Large sessions are sizes bigger than medium.

Here is another way to think of these three types: small sessions collect
or organize all small files into small session chunks; medium sessions
collect medium-sized files by chunks using their parent directory; and
large file allocations are collected into their own chunks and are
allocated independently of other files.

All sessions are client specific. Multiple writers to the same directory or
large file on different clients will use different sessions. Small files from
different clients use different chunks by client.

Small sessions use a smaller chunk size than the configured size. The
small chunk size is determined by dividing the configured size by 32.
StorNext 4.2.1 File System Tuning Guide 51

Chapter 2: Allocation Session Reservation (ASR)
How ASR Works
For example, for 128 MB the small chunk size is 4 MB, and for 1 GB the
small chunk size is 32 MB. Small sessions do not round the chunk size. A
file can get an allocation from a small session only if the allocation
request (offset + size) is less than 1MB. When users do small I/O sizes
into a file, the client buffer cache coalesces these and minimizes
allocation requests. If a file is larger than 1MB and is being written
through the buffer cache, it will most likely have allocation on the order
of 16MB or so requests (depending on the size of the buffer cache on
the client and the number of concurrent users of that buffer cache).

With NFS I/O into a StorNext client, the StorNext buffer cache is used.
NFS on some operating systems breaks I/O into multiple streams per file.
These will arrive on the StorNext client as disjointed random writes.
These are typically allocated from the same session with ASR and are not
impacted if multiple streams (other files) allocate from the same stripe
group. ASR can help reduce fragmentation due to these separate NFS
generated streams.

Files can start using one session type and then move to another session
type. A file can start with a very small allocation (small session), become
larger (medium session), and end up reserving the session for the file. If
a file has more than 10% of a medium sized chunk, it “reserves” the
remainder of the session chunk it was using for itself. After a session is
reserved for a file, a new session segment will be allocated for any other
medium files in that directory.

Small chunks are never reserved.

When allocating subsequent pieces for a session, they are rotated
around to other stripe groups that can hold user data. This is done the
same was as InodeStripeWidth (ISW). (For more information about ISW,
refer to the snfs_config man page.)

The direction of rotation is determined by a combination of the session
key and the index of the client in the client table. The session key is
based on the inode number, so odd inodes will rotate in a different
direction from even inodes. Directory session keys are based on the
parent directory’s inode number.

Video Frame Per File
Formats

Video applications typically write one frame per file and place them in
their own unique directory, and then write them from the same
StorNext client. The file sizes are all greater than 1MB and smaller than
50 MB each and written/allocated in one I/O operation. Each file and
write land in “medium/directory” sessions.
52 StorNext 4.2.1 File System Tuning Guide

Chapter 2: Allocation Session Reservation (ASR)
How ASR Works
For this kind of workflow, ASR is the ideal method to keep “streams” (a
related collection of frames in one directory) together on disk, thereby
preventing checker boarding between multiple concurrent streams. In
addition, when a stream is removed, the space can be returned to the
free space pool in big ASR pieces, reducing free space fragmentation
when compared to the default allocator.

Hotspots and Locality Suppose a file system has four data stripe groups and an ASR size of 1
GB. If four concurrent applications writing medium-sized files in four
separate directories are started, they will each start with their own 1 GB
piece and most likely be on different stripe groups.

Without ASR

Without ASR, the files from the four separate applications are
intermingled on disk with the files from the other applications. The
default allocator does not consider the directory or application in any
way when carving out space. All allocation requests are treated equally.
With ASR turned off and all the applications running together, any
hotspot is very short lived: the size of one allocation/file. (See the
following section for more information about hotspots.)

With ASR

Now consider the 4 GB chunks for the four separate directories. As the
chunks are used up, ASR allocates chunks on a new SG using rotation.
Given this rotation and the timings of each application, there are times
when multiple writers/segments will be on a particular stripe group
together. This is considered a “hotspot,” and if the application expects
more throughput than the stripe group can provide, performance will
be sub par.

At read time, the checker boarding on disk from the writes (when ASR is
off) can cause disk head movement, and then later the removal of one
application run can also cause free space fragmentation. Since ASR
collects the files together for one application, the read performance of
one application's data can be significantly better since there will be little
to no disk head movement.
StorNext 4.2.1 File System Tuning Guide 53

Chapter 2: Allocation Session Reservation (ASR)
How ASR Works
Small Session Rationale Small files (those less than 1 MB) are placed together in small file chunks
and grouped by StorNext client ID. This was done to help use the
leftover pieces from the ASR size chunks and to keep the small files
away from medium files. This reduces free space fragmentation over
time that would be caused by the leftover pieces. Leftover pieces occur
in some rare cases, such as when there are many concurrent sessions
exceeding 500 sessions.

Large File Sessions and
Medium Session
Reservation

When an application starts writing a very large file, it typically starts
writing in some units and extending the file size. For this scenario,
assume the following:

• ASR is turned on, and the configured size is 1 GB.

• The application is writing in 2 MB chunks and writing a 10 GB file.

• ISW is set to 1 GB.

On the first I/O (allocation), an ASR session is created for the directory (if
one doesn't already exist,) and space is either stolen from an expired
session or a new 1 GB piece is allocated on some stripe group.

When the file size plus the request allocation size passes 100 MB, the
session will be converted from a directory session to a file-specific
session and reserved for this file. When the file size surpasses the ASR
size, chunks are reserved using the ISW configured size.

Returning to our example, the extents for the 10 GB file should start
with a 1 GB extent (assuming the first chunk wasn't stolen and a
partial,) and the remaining extents except the last one should all be 1
GB.

Following is an example of extent layout from one process actively
writing in it's own directory as described above:

root@per2:() -> snfsdefrag -e 10g.lmdd
10g.lmdd:
group frbase fsbase fsend kbytes depth
0 3 0x0 0xdd4028 0xde4027 1048576 1
1 4 0x40000000 0xdd488a 0xde4889 1048576 1
2 1 0x80000000 0x10f4422 0x1104421 1048576 1
3 2 0xc0000000 0x20000 0x2ffff 1048576 1
4 3 0x100000000 0xd34028 0xd44027 1048576 1
5 4 0x140000000 0xd9488a 0xda4889 1048576 1
54 StorNext 4.2.1 File System Tuning Guide

Chapter 2: Allocation Session Reservation (ASR)
How ASR Works
6 1 0x180000000 0x10c4422 0x10d4421 1048576 1
7 2 0x1c0000000 0x30000 0x3ffff 1048576 1
8 3 0x200000000 0x102c028 0x103c027 1048576 1
9 4 0x240000000 0xd6c88a 0xd7c889 1048576 1

Here are the extent layouts of two processes writing concurrently but in
their own directory:

root@per2:() -> lmdd of=1d/10g bs=2m move=10g & lmdd of=2d/10g bs=2m move=10g &
[1] 27866
[2] 27867
root@per2:() -> wait
snfsdefrag -e 1d/* 2d/*
10240.00 MB in 31.30 secs, 327.14 MB/sec
[1]- Done lmdd of=1d/10g bs=2m move=10g
10240.00 MB in 31.34 secs, 326.74 MB/sec
[2]+ Done lmdd of=2d/10g bs=2m move=10g
root@per2:() ->
root@per2:() -> snfsdefrag -e 1d/* 2d/*
1d/10g:
group frbase fsbase fsend kbytes depth
0 1 0x0 0xf3c422 0xf4c421 1048576 1
1 4 0x40000000 0xd2c88a 0xd3c889 1048576 1
2 3 0x80000000 0xfcc028 0xfdc027 1048576 1
3 2 0xc0000000 0x50000 0x5ffff 1048576 1
4 1 0x100000000 0x7a0472 0x7b0471 1048576 1
5 4 0x140000000 0xc6488a 0xc74889 1048576 1
6 3 0x180000000 0xcd4028 0xce4027 1048576 1
7 2 0x1c0000000 0x70000 0x7ffff 1048576 1
8 1 0x200000000 0x75ef02 0x76ef01 1048576 1
9 4 0x240000000 0xb9488a 0xba4889 1048576 1

2d/10g:
group frbase fsbase fsend kbytes depth
0 2 0x0 0x40000 0x4ffff 1048576 1
1 3 0x40000000 0xffc028 0x100c027 1048576 1
2 4 0x80000000 0xca488a 0xcb4889 1048576 1
3 1 0xc0000000 0xedc422 0xeec421 1048576 1
4 2 0x100000000 0x60000 0x6ffff 1048576 1
5 3 0x140000000 0xea4028 0xeb4027 1048576 1
6 4 0x180000000 0xc2c88a 0xc3c889 1048576 1
7 1 0x1c0000000 0x77f9ba 0x78f9b9 1048576 1
8 2 0x200000000 0x80000 0x8ffff 1048576 1
StorNext 4.2.1 File System Tuning Guide 55

Chapter 2: Allocation Session Reservation (ASR)
How ASR Works
9 3 0x240000000 0xbe4028 0xbf4027 1048576 1

Finally, consider two concurrent writers in the same directory on the
same client writing 10 GB files. The files will checker board until they
reach 100 MBs. After that, each file will have its own large session and
the checker boarding will cease.

Here is an example of two 5 GB files written in the same directory at the
same time with 2MB I/Os. The output is from the snfsdefrag ‐e
<file> command.

One:
group frbase fsbase fsend kbytes depth
0 1 0x0 0x18d140 0x18d23f 4096 1
1 1 0x400000 0x18d2c0 0x18d33f 2048 1
2 1 0x600000 0x18d3c0 0x18d43f 2048 1
3 1 0x800000 0x18d4c0 0x18d53f 2048 1
4 1 0xa00000 0x18d5c0 0x18d73f 6144 1
5 1 0x1000000 0x18d7c0 0x18d83f 2048 1
6 1 0x1200000 0x18d8c0 0x18d9bf 4096 1
7 1 0x1600000 0x18dbc0 0x18dcbf 4096 1
8 1 0x1a00000 0x18dfc0 0x18e4bf 20480 1
9 1 0x2e00000 0x18e8c0 0x18e9bf 4096 1
10 1 0x3200000 0x18eac0 0x18ebbf 4096 1
11 1 0x3600000 0x18ecc0 0x18f3bf 28672 1
12 1 0x5200000 0x18f9c0 0x18fdbf 16384 1
13 1 0x6200000 0x1901c0 0x19849f 536064 1
14 3 0x26d80000 0x1414028 0x1424027 1048576 1
15 4 0x66d80000 0x150f092 0x151f091 1048576 1
16 1 0xa6d80000 0x10dc6e 0x11dc6d 1048576 1
17 3 0xe6d80000 0x1334028 0x1344027 1048576 1
18 4 0x126d80000 0x8f74fe 0x8fd99d 412160 1

Two:
group frbase fsbase fsend kbytes depth
0 1 0x0 0x18d0c0 0x18d13f 2048 1
1 1 0x200000 0x18d240 0x18d2bf 2048 1
2 1 0x400000 0x18d340 0x18d3bf 2048 1
3 1 0x600000 0x18d440 0x18d4bf 2048 1
4 1 0x800000 0x18d540 0x18d5bf 2048 1
5 1 0xa00000 0x18d740 0x18d7bf 2048 1
6 1 0xc00000 0x18d840 0x18d8bf 2048 1
7 1 0xe00000 0x18d9c0 0x18dbbf 8192 1
56 StorNext 4.2.1 File System Tuning Guide

Chapter 2: Allocation Session Reservation (ASR)
How ASR Works
8 1 0x1600000 0x18dcc0 0x18dfbf 12288 1
9 1 0x2200000 0x18e4c0 0x18e8bf 16384 1
10 1 0x3200000 0x18e9c0 0x18eabf 4096 1
11 1 0x3600000 0x18ebc0 0x18ecbf 4096 1
12 1 0x3a00000 0x18f3c0 0x18f9bf 24576 1
13 1 0x5200000 0x18fdc0 0x1901bf 16384 1
14 4 0x6200000 0x1530772 0x1540771 1048576 1
15 3 0x46200000 0x1354028 0x1364027 1048576 1
16 1 0x86200000 0x12e726 0x13e725 1048576 1
17 4 0xc6200000 0x14ed9b2 0x14fd9b1 1048576 1
18 3 0x106200000 0x1304028 0x13127a7 948224 1

Without ASR and with concurrent writers of big files, each file typically
starts on its own stripe group. The checker boarding doesn't occur until
there are more writers than the number of data stripe groups. However,
once the checker boarding starts, it will exist all the way through the
file. For example, if we have two data stripe groups and four writers, all
four files would checker board until the number of writers is reduced
back to two or less.
StorNext 4.2.1 File System Tuning Guide 57

Chapter 2: Allocation Session Reservation (ASR)
How ASR Works
58 StorNext 4.2.1 File System Tuning Guide

Appendix A
StorNext File System Stripe

Group Affinity

This appendix describes the behavior of the stripe group affinity feature
in the StorNext file system, and it discusses some common use cases.

Note: This section does not discuss file systems managed by StorNext
Storage Manager. There are additional restrictions on using
affinities for these managed file systems.

Definitions

Following are definitions for terms used in this appendix:

Stripe Group A stripe group is collection of LUNs (typically disks or arrays,) across
which data is striped. Each stripe group also has a number of associated
attributes, including affinity and exclusivity.

Affinity An affinity is used to steer the allocation of a file’s data onto a set of
stripe groups. Affinities are referenced by their name, which may be up
to eight characters long. An affinity may be assigned to a set of stripe
StorNext 4.2.1 File System Tuning Guide 59

Appendix A: StorNext File System Stripe Group Affinity
Setting Affinities
groups, representing a named pool of space, and to a file or directory,
representing the space from which space should be allocated for that
file (or files created within the directory).

Exclusivity A stripe group which has both an affinity and the exclusive attribute can
have its space allocated only by files with that affinity. Files without a
matching affinity cannot allocate space from an exclusive stripe group.

Setting Affinities

Affinities for stripe groups are defined in the file system configuration
file. They can be created through the StorNext GUI or by adding one or
more Affinity lines to a StripeGroup section in the configuration
file. A stripe group may have multiple affinities, and an affinity may be
assigned to multiple stripe groups.

Affinities for files are defined in the following ways:

• Using the cvmkfile command with the ‘‐k’ option

• Using the snfsdefrag command with the ‘‐k’ option

• Using the cvaffinity command with the ‘‐s’ option

• Through inheritance from the directory in which they are created

Through the CvApi_SetAffinity() function, which sets affinities
programmatically

Allocation Strategy

StorNext has multiple allocation strategies which can be set at the file
system level. These strategies control where a new file’s first blocks will
be allocated. Affinities modify this behavior in two ways:
60 StorNext 4.2.1 File System Tuning Guide

Appendix A: StorNext File System Stripe Group Affinity
Common Use Cases
• A file with an affinity is allocated only on a stripe group with
matching affinity.

• A stripe group with an affinity and the exclusive attribute is used
only for allocations by files with matching affinity.

Once a file has been created, StorNext attempts to keep all of its data on
the same stripe group. If there is no more space on that stripe group,
data may be allocated from another stripe group.

If the file has an affinity, only stripe groups with that affinity are
considered. If all stripe groups with that affinity are full, new space may
not be allocated for the file, even if other stripe groups are available.

Common Use Cases

Here are some sample use cases in which affinities are used to maximize
efficiency and operation.

Segregating Audio and
Video Files Onto Their
Own Stripe Groups

To segregate audio and video files onto their own stripe groups:

One common use case is to segregate audio and video files onto their
own stripe groups. Here are the steps involved in this scenario:

• Create one or more stripe groups with an AUDIO affinity and the
exclusive attribute.

• Create one or more stripe groups with a VIDEO affinity and the
exclusive attribute.

• Create one or more stripe groups with no affinity (for non-audio,
non-video files).

• Create a directory for audio using ‘cvmkdir ‐k AUDIO audio’.

• Create a directory for video using ‘cvmkdir ‐k VIDEO video’.

Files created within the audio directory will reside only on the AUDIO
stripe group. (If this stripe group fills, no more audio files can be
created.)
StorNext 4.2.1 File System Tuning Guide 61

Appendix A: StorNext File System Stripe Group Affinity
Common Use Cases
Files created within the video directory will reside only on the VIDEO
stripe group. (If this stripe group fills, no more video files can be
created.)

Reserving High-Speed
Disk For Critical Files

In this use case, high-speed disk usage is reserved for and limited to only
critical files. Here are the steps for this scenario:

• Create a stripe group with a FAST affinity and the exclusive
attribute.

• Label the critical files or directories with the FAST affinity.

The disadvantage here is that the critical files are restricted to using only
the fast disk. If the fast disk fills up, the files will not have space
allocated on slow disks.

To work around this limitation, you could reserve high-speed disk for
critical files but also allow them to grow onto slow disks. Here are the
steps for this scenario:

• Create a stripe group with a FAST affinity and the exclusive
attribute.

• Create all of the critical files, pre allocating at least one block of
space, with the FAST affinity. (Or move them using snfsdefrag
after ensuring the files are not empty.)

• Remove the FAST affinity from the critical files.

Because files allocate from their existing stripe group even if they no
longer have a matching affinity, the critical files will continue to grow
on the FAST stripe group. Once this stripe group is full, they can allocate
space from other stripe groups since they do not have an affinity.

This scenario will not work if new critical files can be created later,
unless there is a process to move them to the FAST stripe group, or an
affinity is set on the critical files by inheritance but removed after their
first allocation (to allow them to grow onto non-FAST groups).
62 StorNext 4.2.1 File System Tuning Guide

Appendix B
Best Practice

Recommendations

This appendix contains some best practice recommendations for various
StorNext features which you can implement to ensure optimal
performance and efficiency.

Replication Best Practices

This section describes some best practices related to using the StorNext
replication feature.

Replication Copies The replication target can keep one or more copies of data. Each copy is
presented as a complete directory tree for the policy. The number of
copies and placement of this directory are ultimately controlled by the
replication target. However, if the target does not implement policy
here, the source system may request how many copies are kept and
how the directories are named.

When multiple copies are kept, the older copies and current copy share
files where there are no changes. This shows up as extra hard links to
the files. If a file is changed on the target, it affects all copies sharing the
file. If a file is changed on the replication source, older copies on the
target are not affected.
StorNext 4.2.1 File System Tuning Guide 63

Appendix B: Best Practice Recommendations
Replication Best Practices
The best means to list which replication copies exist on a file system is
running snpolicy ‐listrepcopies command. The rmrepcopy,
mvrepcopy and exportrepcopy options should be used to manage
the copies.

Replication and
Deduplication

Replication can be performed on deduplicated or non-deduplicated
data. Even if the source system is running deduplication, you can still
replicate non-deduplicated data to the target using the
rep_dedup=off policy parameter.

A good example of when this makes sense is replicating into a TSM
relation point which is storing to tape. If deduplicated replication is
used, the store to tape requires retrieving files from the blockpool. This
is much more likely to stall tape drives than streaming raw file content
to tape.

The tradeoff here is that all file data will be sent over the network even
if the target system has already seen it. So if the limiting resource is
network bandwidth and the data is amenable to deduplication, then
deduplication-enabled replication into TSM may perform better.

With deduplicated replication, the file contents are deduplicated prior
to replication. There is no concept of replication using deduplicated
data without deduplicating the data on the source system.

Replication data is moved via a pull model, in which the target of
replication asks the source system to send it data it does not yet have.
For non-deduplicated replication, this will be performed over the
network UNLESS the source file system is cross mounted on the target,
in which case the target will use local I/O to copy the data. The number
of files actively being replicated at the same time, and the size of the
buffer used for I/O in the non-deduplicated data case are controlled by
the replicate_threads and data_buffer_size parameters on the
target system. The default buffer size is 4 Mbytes, and the default
stream count is 4.

Replication and
Distributed LAN Client
Servers

It might seem obvious, but it’s worth mentioning that if your
configuration includes Distributed LAN Clients (DLC), the machines you
use for your DLC servers should not also be metadata controllers. Doing
so may not only cause performance degradation, but also expose the
64 StorNext 4.2.1 File System Tuning Guide

Appendix B: Best Practice Recommendations
Deduplication Best Practices
virtual IPs to additional vulnerability. For best performance, machines
used as DLC servers should always be dedicated machines.

Replication with
Multiple Physical
Network Interfaces

If you want to use replication with multiple physical network interfaces,
you must arrange for traffic on each interface to be routed
appropriately.

In cases where both the replication source and target are plugged into
the same physical Ethernet switch, you can accomplish this with VLANs.

In cases where replication is over multiple WAN links, the addresses
used on the source and target replication systems must route over the
appropriate WAN links in order for replication to use all the links.

Deduplication Best Practices

This section describes some best practices related to using the StorNext
deduplication feature.

Deduplication and File
Size

Deduplication will not be beneficial on small files, nor will it provide any
benefit on files using compression techniques on the content data (such
as mpeg format video). In general, deduplication is maximized for files
that are 64MB and larger. Deduplication performed on files below 64MB
may result in sub-optimal results.

You can filter out specific files to bypass by using the dedup_skip
policy parameter. This parameter works the same as filename expansion
in a UNIX shell.

You can also skip files according to size by using the dedup_min_size
parameter.

Deduplication and
Backups

Backup streams such as tar and netbackup can be recognized by the
deduplication algorithm if the dedup_filter parameter on the policy
is set to true.
StorNext 4.2.1 File System Tuning Guide 65

Appendix B: Best Practice Recommendations
Deduplication Best Practices
In this configuration the content of the backup image is interpreted to
find the content files, and these are deduplicated individually. When this
this flag is not set to true, the backup image is treated as raw data and
the backup metadata in the file will interfere with the reduction
potential of the deduplication algorithm. Recognition of a backup
stream is according to its contents, not the file name.

Deduplication and File
Inactivity

Deduplication is performed on a file after a period of inactivity after the
file is last closed, as controlled by the dedup_age policy parameter. It is
worth tuning this parameter if your workload has regular periods of
inactivity on files before they are modified again.

Note: Making the age too small can lead to the same file being
deduplicated more than once.

Deduplication and
System Resources

Running deduplication is a CPU and memory-intensive operation, and
the backing store for deduplicated data can see a lot of random I/O,
especially when retrieving truncated files.

Consequently, plan accordingly, and do not under-resource the
blockpool file system or metadata system if you are striving for optimal
performance.

Deduplication Parallel
Streams

The number of deduplication parallel streams running is controlled by
the ingest_thread parameter in /usr/cvfs/config/
snpolicyd.conf.

If you are not I/O limited and have more CPU power available, increasing
the stream count from the default value of 4 streams can improve
throughput.
66 StorNext 4.2.1 File System Tuning Guide

Appendix B: Best Practice Recommendations
Truncation Best Practices
Truncation Best Practices

This section describes some best practices related to using the StorNext
truncation feature.

Deduplication and
Truncation

If deduplication is run without StorNext Storage Manager also storing
the file contents, then snpolicyd can manage file truncation. If
Storage Manager is also running on a directory, it becomes the engine
which removes the online copy of files.

Note: Storage Manager can retrieve deleted files from tape. With
deduplication, if the primary file is removed from a directory,
the deduplicated copy is no longer accessible. This is a
fundamental difference between the two mechanisms
(truncation and deduplication) which must be understood.

If a policy is configured not to deduplicate small files, it will
automatically not truncate them. It is also possible to set an
independent minimum size for files to truncate, and a stub length to
leave behind when a file is truncated.

Once a file is truncated by the policy daemon, the contents must be
retrieved from the deduplicated storage. This can be done by reading
the file, or via the snpolicy ‐retrieve command.

Note: When using the command line to run commands, the
truncation policy can potentially remove the contents again
before they are used, depending on how aggressive the policy
is. Unlike TSM, the whole file does not have to be retrieved
before I/O can proceed. The number of parallel retrieves is
governed by the event_threads parameter in /usr/cvfs/
config/snpolicyd.conf.

In the case where both deduplication and tape copies of data are being
made, TSM is the service which performs truncation.
StorNext 4.2.1 File System Tuning Guide 67

Appendix B: Best Practice Recommendations
Truncation Best Practices
68 StorNext 4.2.1 File System Tuning Guide

	Title Page
	Contents
	StorNext File System Tuning
	The Underlying Storage System
	RAID Cache Configuration
	RAID Write-Back Caching
	RAID Read-Ahead Caching
	RAID Level, Segment Size, and Stripe Size

	File Size Mix and Application I/O Characteristics
	Direct Memory Access (DMA) I/O Transfer
	Buffer Cache
	NFS / CIFS
	The NFS subtree_check Option

	Reverse Path Lookup (RPL)
	SNFS and Virus Checking
	The Metadata Network
	The Metadata Controller System
	FSM Configuration File Settings
	Stripe Groups
	Affinities
	StripeBreadth
	BufferCacheSize
	InodeCacheSize
	ThreadPoolSize
	FsBlockSize
	JournalSize

	SNFS Tools
	Mount Command Options
	SNFS External API

	Optimistic Allocation
	How Optimistic Allocation Works
	Optimistic Allocation Formula

	The Distributed LAN (Disk Proxy) Networks
	Hardware Configuration
	Network Configuration and Topology

	Distributed LAN Servers
	Distributed LAN Client Vs. Legacy Network Attached Storage
	Performance
	Fault Tolerance
	Load Balancing
	Client Scalability
	Robustness and Stability
	Consistent Security Model

	Windows Memory Requirements
	Cpuspeed Service Issue on Linux
	Example FSM Configuration File
	Linux Example Configuration File
	Windows Example Configuration File

	Ports Used By StorNext

	Allocation Session Reservation (ASR)
	How ASR Works
	Allocation Sessions
	Video Frame Per File Formats
	Hotspots and Locality
	Without ASR
	With ASR

	Small Session Rationale
	Large File Sessions and Medium Session Reservation

	StorNext File System Stripe Group Affinity
	Definitions
	Stripe Group
	Affinity
	Exclusivity

	Setting Affinities
	Allocation Strategy
	Common Use Cases
	Segregating Audio and Video Files Onto Their Own Stripe Groups
	Reserving High-Speed Disk For Critical Files

	Best Practice Recommendations
	Replication Best Practices
	Replication Copies
	Replication and Deduplication
	Replication and Distributed LAN Client Servers
	Replication with Multiple Physical Network Interfaces

	Deduplication Best Practices
	Deduplication and File Size
	Deduplication and Backups
	Deduplication and File Inactivity
	Deduplication and System Resources
	Deduplication Parallel Streams

	Truncation Best Practices
	Deduplication and Truncation

